
Learning to Approximate Adaptive Kernel Convolution on Graphs

Jaeyoon Sim1, Sooyeon Jeon1, InJun Choi1, Guorong Wu2, Won Hwa Kim1

1Pohang University of Science and Technology, Pohang, South Korea
2University of North Carolina at Chapel Hill, Chapel Hill, USA

{simjy98, jsuyeon, surung9898, wonhwa}@postech.ac.kr, guorong wu@med.unc.edu

Abstract
Various Graph Neural Networks (GNNs) have been success-
ful in analyzing data in non-Euclidean spaces, however, they
have limitations such as oversmoothing, i.e., information be-
comes excessively averaged as the number of hidden layers
increases. The issue stems from the intrinsic formulation of
conventional graph convolution where the nodal features are
aggregated from a direct neighborhood per layer across the
entire nodes in the graph. As setting different number of hid-
den layers per node is infeasible, recent works leverage a
diffusion kernel to redefine the graph structure and incorpo-
rate information from farther nodes. Unfortunately, such ap-
proaches suffer from heavy diagonalization of a graph Lapla-
cian or learning a large transform matrix. In this regards,
we propose a diffusion learning framework, where the range
of feature aggregation is controlled by the scale of a diffu-
sion kernel. For efficient computation, we derive closed-form
derivatives of approximations of the graph convolution with
respect to the scale, so that node-wise range can be adaptively
learned. With a downstream classifier, the entire framework is
made trainable in an end-to-end manner. Our model is tested
on various standard datasets for node-wise classification for
the state-of-the-art performance, and it is also validated on
a real-world brain network data for graph classifications to
demonstrate its practicality for Alzheimer classification.

Introduction
Graph Neural Network (GNN) has been heavily recognized
in machine learning and computer vision with various prac-
tical applications such as text classification (Huang et al.
2019), neural machine translation (Bastings et al. 2017), 3D
shape analysis (Wei et al. 2020; Verma et al. 2018), semantic
segmentation (Qi et al. 2017; Xie et al. 2021), social infor-
mation systems (Lin et al. 2021) and speech recognition (Liu
et al. 2016). At the heart of these GNN models lies the graph
convolution, which develops useful representation of each
node with a filtering operation on the graph. Given a graph
comprised of a set of nodes/edges and signal defined on its
nodes, in (Kipf et al. 2017), a convolutional layer was intro-
duced as a linear combination of the signal within a direct
neighborhood of each node using the topology of the graph,
and its equivalence with spectral filtering (Hammond et al.
2011) has been shown. Stacking these convolutional layers

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(together with non-linear activations) constitutes the funda-
mental Graph Convolutional Network (GCN) (Kipf et al.
2017), and testing a newly developed GCN on classifying
node-wise labels has become a standard benchmark to vali-
date the GCN model (Chen et al. 2018; Wu et al. 2019; Xu
et al. 2020; Chen et al. 2020; Yang et al. 2021).

Within the architecture of conventional GCN and its vari-
ants, there is a fundamental issue: each convolution layer
gathers information within a direct neighborhood uniformly
across all nodes. When information aggregation from di-
rect neighborhood is not sufficient, the convolution layers
are stacked to seek for useful information from a larger
neighborhood. Such an architecture with several convolu-
tion layers broadens the range of neighborhood for informa-
tion aggregation uniformly, again, across the entire nodes in
the graph. Eventually, when the same information is shared
across all the nodes, it leads to “oversmoothed” representa-
tion of each node, not being able to characterize one from
another. This behavior can be easily interpreted from the
spectral perspective, as a filtering operation in the spectral
space will uniformly affect all nodes in the graph space.

Perhaps the most intuitive solution to the oversmoothing
is to use different ranges of neighborhood per node. How-
ever, it is difficult to design such a model with conventional
graph convolution, as it would require different number of
convolution layers for each node which is highly imprac-
tical. Several recent works tried to overcome this locality
issue. Methods in (Veličković et al. 2018; Kim et al. 2022)
leverage attention to capture long-range relationships among
nodes, authors in (Gao et al. 2019; Wu et al. 2022b) develop
pooling scheme to compress graphs, and authors in (Chen
et al. 2020) improve upon the vanilla GCN with skip con-
nection of residuals as in ResNet (He et al. 2016).

Notably, GraphHeat (Xu et al. 2020) used a diffusion ker-
nel to redefine distances between nodes as a heat diffusion
process among the nodes along the graph structure. It eas-
ily connects many local nodes within a range (i.e., scale)
even though they are not directly connected. Such an ap-
proach is quite effective when the homophily condition is
reasonably held even if the given edges in a graph may be
noisy. But still, the scale was defined as a hyperparameter
and the same range was arranged across the entire graph.
Later, a framework that trains on the scale according to a
target task was introduced with the gradient of a loss with re-

spect to the scale for each node. While using diffusion kernel
have shown to be quite effective, such an approach is com-
putationally inefficient with heavy diagonalization of graph
Laplacian, especially when dealing with a large or a popu-
lation of graphs. Other diffusion-based model such as (Zhao
et al. 2021) uses diffusion on layers and channels of features
instead of nodes, and Graph Neural Diffusion (GRAND)
(Chamberlain et al. 2021) trains on large weight matrices
for attention which can be computationally burdening.

In this regime, we propose an efficient framework that
learns adaptive scales for each node of a graph with approx-
imations, i.e., Learning Scales via APproximation (LSAP).
The key idea is to train on the node-wise range of neigh-
borhood instead of excessively stacking convolutional lay-
ers. For this, we first show that the formulation in (Xu et al.
2020) can be defined as a heat kernel convolution, which
can be approximated with various polynomials (Huang et al.
2020). We then derive the derivatives of the expansion co-
efficients of these polynomials in the scale space, which
can be used to define task-specific gradients to train the op-
timal scales within the approximation instead of learning
exhaustive transform matrices. LSAP achieves novel node-
wise representation adaptively by leveraging features from
other nodes within a trained “range” defined by the diffusion
kernel. The ideas above lead to the following contributions:

• We propose a GNN with an adaptive diffusion kernel
whose approximations are trainable in an end-to-end
manner at each node,

• We derive closed-form derivatives of various polynomial
coefficients with respect to the range (i.e., scale) so that
graph convolution can be efficiently trained,

• Learning on scales provides interpretable results on the
semantics of each node, validated on two independent
datasets with different tasks.

LSAP demonstrates superior results on the node classifica-
tion task in a semi-supervised learning setting (Shchur et al.
2018), as well as on a graph classification task performed on
a population of brain networks to predict diagnostic labels
for Alzheimer’s Disease (AD). Especially in the AD experi-
ment, the trained scales delineate specific regions highly re-
sponsible for the prediction of AD for interpretability.

Related Works
Graph Neural Networks. The vanilla GCN (Kipf et al.
2017) and Variant GNNs utilize graph convolution to
perform feature aggregation from neighbors. Simplifying
Graph Convolution (SGC) (Wu et al. 2019) captures high-
order information in the graph with K-th power of the
adjacency matrix, GCNII (Chen et al. 2020) extends a
vanilla GCN with residual connection and identity map-
ping (He et al. 2016), and Graph Attention Network (GAT)
(Veličković et al. 2018) introduces attention mechanism on
graphs to assign relationships to different nodes. Personal-
ized Propagation of Neural Prediction and its Approxima-
tion (APPNP) (Klicpera et al. 2019b) improved message
propagation based on personalized PageRank (Page et al.
1999), Graph Random Neural Network (GRAND) (Feng

et al. 2020) developed graph data augmentation, and Deep
Adaptive Graph Neural Network (DAGNN) (Liu et al. 2020)
disentangled representation transform and message propaga-
tion to construct a deep model.

Also, there are recent works that discover useful graph
structures from data to adaptively update the structures for
message passing. DIAL-GNN (Chen et al. 2021) jointly
learned graph structure and embeddings by iteratively
searching for hidden graph structures, Bayesian GCNN
(Zhang et al. 2019a) incorporated uncertain graph informa-
tion through a parametric random graph model, and Node-
Former (Wu et al. 2022a) proposed an efficient message
passing scheme for propagating layer-wise node signals.
Graph Neural Networks with Diffusion. There are sev-
eral previous works that adopt diffusion on graphs for GNNs
(Lee et al. 2023; Zhang et al. 2023; Huang et al. 2023).
Graph Diffusion Convolution (GDC) (Klicpera et al. 2019a)
introduced spatially localized graph convolution to aggre-
gate information of indirect nodes, Adaptive Diffusion Con-
volution (ADC) (Zhao et al. 2021) learned a global ra-
dius applied on different layers and channels of features,
GRAND (Chamberlain et al. 2021) defined diffusion PDEs
on graphs and trained on weight matrices to learn attention
for diffusivity, and Fast and Scalable Network Represen-
tation Learning (ProNE) (Zhang et al. 2019b) focused on
effective network embedding with spectral propagation for
enhancement, where they train a single global scale in the
spectral propagation. Our methods differ from these meth-
ods in that it uses an adaptive parametric kernel at individ-
ual nodes, and we propose a new optimization scheme on
the scales within its polynomial approximations. Also, many
of methods above can be adopted for graph classification as
well (Veličković et al. 2018; Klicpera et al. 2019a) with an
additional layer transforming node embeddings to a graph
embedding. Other literature, although not fully discussed in
this section, will be introduced and used as the baselines to
compare the performances with our proposed model for both
node and graph classification tasks later.

Preliminaries
Graph Convolution with Heat Kernel. An undirected
graph G = {V,E} comprises a node set V with |V | = N
and an edge set E. A graph G is often represented as a sym-
metric adjacency matrix A of which individual elements apq
encodes connectivity information between node p and q. A
graph Laplacian is defined as L = D − A where D is a
degree matrix, i.e., a diagonal matrix with Dpp =

∑
q Apq .

Since L is positive semi-definite, it has a complete set of
orthonormal basis U = [u1|u2|...|uN] known as Laplacian
eigenvectors and corresponding real and non-negative eigen-
values 0 = λ1 ≤ λ2 ≤ ... ≤ λN . A normalized Laplacian is
defined as L̂ = IN−D−1/2AD−1/2 where IN is an identity
matrix. Since L̂ is real symmetric, it also has a complete set
of eigenvectors and eigenvalues.

In (Chung et al. 1997), the heat kernel between nodes p
and q is defined in the spectral domain spanned by U as

hs(p, q) =

N∑
i=1

e−sλiui(p)ui(q) (1)

where ui is i-th eigenvector of the graph Laplacian, and the
kernel e−sλi captures smooth transition between the nodes
as a diffusion process within the scale s. Using convolutional
theorem (Oppenheim et al. 1997), graph Fourier transform,
i.e., x̂ = UTx, offers a way to define the graph convolution
∗ of a signal x(p) with a filter hs. Using Eq. (1), heat kernel
convolution with hs as a low-pass filter is defined as

hs ∗ x(p) =
N∑
i=1

e−sλi x̂(i)ui(p) (2)

whose band-width is controlled by the scale s.
Approximation of Convolution with Heat Kernel. The
exact computation of Eq. (2) requires diagonalization of a
graph Laplacian which can be computationally challenging.
Existing literature uses Chebyshev polynomial as a basis to
approximate the kernel convolution as a linear transform (He
et al. 2022). In (Huang et al. 2020), approximation of heat
kernel convolution was introduced using several orthogo-
nal polynomials such as Chebyshev, Hermite and Laguerre.
The analytic solutions to the polynomial coefficients cs,n for
scale s were derived for Chebyshev polynomial PT

n , Her-
mite polynomial PH

n and Laguerre polynomial PL
n , where n

denotes the degree of each polynomial.
A polynomial Pn ∈ {PT

n , PH
n , PL

n } is often defined by a
second order recurrence as

Pn+1(λ) = (αnλ+ βn)Pn(λ) + γnPn−1(λ) (3)

where initial conditions P−1(λ) = 0 and P0(λ) = 1 for
n ≥ 0 and parameters αn, βn and γn determine the type of
polynomial. Then, the heat kernel e−sλ can be defined with
polynomials Pn and expansion coefficients cs,n as

e−sλ =

∞∑
n=0

cs,nPn(λ), (4)

Now, the solution to the heat diffusion in Eq. (2) can be
expressed in terms of Pn and cs,n via Eq. (4) as

hs ∗ x(p) =
∞∑

n=0

cs,n

N∑
j=1

Pn(λj)x̂(j)uj(p). (5)

Since L̂uj = λjuj , the Eq. (5) can be further written as

hs ∗ x(p) =
∞∑

n=0

cs,nPn(L̂)x(p) (6)

where initial conditions P−1(L̂)x(p) = 0 and P0(L̂)x(p) =
x(p) from the second order recurrence. Notice that Eq. (6)
represents the convolution operation as a simple linear com-
bination of cs,n and Pn without uj , and it is often approxi-
mated at the order of m for practical purposes.

Learning to Approximate Kernel Convolution
We introduce our model, i.e., LSAP, that trains on the ap-
proximations for the optimal range of neighborhood at in-
dividual nodes. The derivatives to train s in Eq. (6) for two
separate tasks, i.e., node classification and graph classifica-
tion, are derived in their closed-forms.

Model Architecture
In most of GCN frameworks (Kipf et al. 2017; Yang et al.
2021), a convolution operation at the k-th layer is given as

Hk = σk(ÃHk−1Wk) (7)

where Ã is a normalized adjacency matrix, Wk is a trainable
weight matrix, and σk is a non-linear activation function. It
takes an input Hk−1 and outputs a new representation Hk.
Each convolution operation takes features from direct neigh-
bors of each node according to Ã to design the new node
representation. As more convolution layers are stacked, the
range of aggregation is uniformly increased for all nodes
causing the infamous “oversmoothing” issue. To alleviate
oversmoothing, we propose to utilize a diffusion kernel, i.e.,
a heat kernel, on the graph to define ranges of neighborhood
for individual nodes, so that the node-wise range is adap-
tively defined to avoid the oversmoothing.

The architecture of LSAP is given in Fig. 1. The over-
all components are similar to the original GCN (Kipf et al.
2017), however, LSAP redefines the convolution with ap-
proximated heat kernel. Consider a graph G given as a
Laplacian L̂, feature X defined on its nodes and either node-
wise or graph-wise label Y . Our framework takes L̂ and X
as inputs, performs approximated heat kernel convolutions
and outputs a prediction Ŷ . The Ŷ is then compared with
the ground truth Y , and the error is backpropagated to up-
date model parameters including the scale s.

Convolution Layer. Based on Eq. (6), Eq. (7) is reformu-
lated by replacing the normalized adjacency matrix Ã with
the heat kernel with polynomial approximation as

Hk = σk([

m∑
n=0

cs,nPn(L̂)]Hk−1Wk). (8)

While Ã let the model combine information from nodes
within 1-hop distance only, Eq. (8) let it aggregate informa-
tion within a “range” of each node defined by s within cs,n.
The Eq. (8) defines a convolution layer, and we can stack K
of them to achieve a better representation of the original X .

Output Layer. The output layer yields a prediction of Y ,
i.e., Ŷ , via softmax. Depending on the task, it may include a
simple Multi-layer Perceptron (MLP) that can be trained. A
loss Lerr is computed at this layer which quantifies the error
between Ŷ and Y using cross-entropy for different tasks,
e.g., node classification or graph classification.

Model Update. The loss Lerr is backpropagated to update
the model parameters, i.e., Wk and s. To maintain the scale
positive, an ℓ1-norm regularization on s is imposed. The
overall objective function L is given as

L = Lerr + α|s| (9)

where α is a hyperparameter. The weight Wk can be easily
trained with backpropagation, and a multi-variate s across
all nodes can be also trained given a gradient on scale s as

s← s− βs
∂L
∂s

(10)

Figure 1: Illustration of LSAP. A graph (as normalized Laplacian L̂) and node feature X are inputted to the convolution layer.
The output HK is inputted to a downstream classifier which yields a prediction Ŷ . The loss from Ŷ is backpropagated to update
the classifier and convolution approximation with s = [s1, . . . , sN] to adaptively adjust the scale of each node.

where βs is a learning rate. It requires ∂L
∂s to make the frame-

work trainable, and we derive the ∂L
∂s in a closed-form to

train on the approximations of Eq. (8) in the following.

Gradients of Polynomial Coefficients with Scale
We denote expansion coefficients as cTs,n, cHs,n and cLs,n that
correspond to PT

n , PH
n and PL

n . As introduced in (Huang
et al. 2020), one can obtain a solution to the heat diffusion by
obtaining expansion coefficient with each polynomial in Pn.
In order to design a gradient-based “learning” framework
of node-wise range (i.e., scale) based on these expansions,
we derived gradients of loss ∂L

∂s in closed-forms. This is an
essential component of LSAP as it let the model efficiently
train without diagonalization of L̂. The ∂L

∂s can be achieved
using the chain rule in a traditional way, and to obtain ∂L

∂s in
terms of the Hk, we compute ∂cs,n

∂s for each coefficient.

Chebyshev Polynomial. The recurrence relation and ex-
pansion coefficient for Chebyshev polynomial are given as

PT
n+1(L̂) = (2− δn0)L̂P

T
n (L̂)− PT

n−1(L̂),

cTs,n = (2− δn0)(−1)ne−
sb
2 In

(
sb
2

) (11)

where b > 0 is a hyper-parameter, and In is the modified
Bessel function of the first kind (Olver et al. 2010).

Hermite Polynomial. The recurrence relation and expan-
sion coefficient for Hermite polynomial are written as

PH
n+1(L̂) = 2L̂PH

n (L̂)− 2nPH
n−1(L̂),

cHs,n =
1

n!

(−s
2

)n

e
s2
4 ,

(12)

Laguerre Polynomial. For Laguerre polynomial, the re-
currence relation and expansion coefficient are

PL
n+1(L̂) =

(2n+ 1− L̂)PL
n (L̂)− nPL

n−1(L̂)

n+ 1
,

cLs,n =
sn

(s + 1)n+1
.

(13)

Notice that all the expansion coefficients above are de-
fined by s. If they are differentiable with respect to s, then
we do not need to learn expensive parameters but simply
train on these polynomial approximations with s directly.
Lemma 1. Consider an orthogonal polynomial Pn over in-
terval [a, b] with inner product

∫ b

a
Pn(λ)Pk(λ)w(λ)dλ =

δnk, where w(λ) is the weight function. If Pn expands the
heat kernel, the expansion coefficients cs,n with respect to s
are differentiable and ∂cs,n

∂s = −
∫ b

a
λe−sλPn(λ)w(λ)dλ.

Lemma 1 (with a proof in the supplementary) says that
the cs,n in Eq. (11), (12) and (13) have the derivatives with
respect to s. These will be used in the following two sections
to define gradients on loss functions for different tasks.

Semi-supervised Node Classification
The goal of node classification is to predict labels of unla-
beled nodes based on the information from other nodes. The
output layer (after K-convolution layers) of LSAP produces
a prediction Ŷ = σ(HK), and the training should be per-
formed to reduce the error between Ŷ and the true Y .
Lemma 2. Let a graph convolution be operated by Eq. (8),
which approximates the convolution with Pn and cs,n. If a
loss Lerr for node-wise classification is defined as cross-
entropy between a prediction Ŷ = σ(HK), where σ(·) is
a softmax function, and the true Y , then
∂Lerr

∂s
=(Ŷ − Y)× σ

′
k([

m∑
n=0

cs,nPn(L̂)]Hk−1Wk)W
T
k

× (

m∑
n=0

Pn(L̂)H
T
k−1 + [

m∑
n=0

cs,nPn(L̂)]
∂Hk−1

∂cs,n
)
∂cs,n

∂s
(14)

where σ
′

k is the derivative of σk.
Lemma 2 let LSAP backpropagate the error to update s to

obtain the optimal scale per node for node classification.

Graph Classification
Consider a population of graphs {Gt}Tt=1 with correspond-
ing labels {Yt}Tt=1, and learning a graph classification model

finds a function f(Gt) = Yt. For this, the output layer con-
sists of a readout layer fR(·) (i.e., MLP with ReLU) and a
softmax σ(·) at the end to construct pseudo-probability for
each class. The fR(·) with weights WR takes the output HK

from the convolution layers as an input and returns HR as

HR = fR(HK ;WR), (15)

and prediction Ŷ = σ(HR).
Lemma 3. Let Hk from Eq. (8) be a graph convolution with
a heat kernel with polynomial Pn and coefficients cs,n. If a
loss Lerr for classifying graph-wise label is defined as cross-
entropy between a prediction Ŷ = σ(HR), where σ(·) is a
softmax function, and the true Y , then

∂Lerr

∂s
=(Ŷ − Y)× ∂HR

∂HK
× σ

′
k([

m∑
n=0

cs,nPn(L̂)]Hk−1Wk)W
T
k

× (

m∑
n=0

Pn(L̂)H
T
k−1 + [

m∑
n=0

cs,nPn(L̂)]
∂Hk−1

∂cs,n
)
∂cs,n

∂s
(16)

where σ
′

k is the derivative of σk.
Lemma 3 let LSAP adaptively update the scale s across

all nodes for each node using Eq. (10) towards the minimal
error for predicting graph-wise label.

Experiments
In this section, we compare the performances of LSAP
and baselines on node classification and graph classifica-
tion. LSAP-C, LSAP-H and LSAP-L correspond to ap-
proximation frameworks with PT

n , PH
n and PL

n , and the
model with exact computation of the heat kernel convolu-
tion is referred as Exact. For the node classification, we used
conventional benchmarks for semi-supervised learning task
(Shchur et al. 2018). For the graph classification, we inves-
tigated real brain network data from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to classify different diag-
nostic stages towards Alzheimer’s Disease (AD) for a prac-
tical application. These tasks on seven different benchmarks
can demonstrate the feasibility of LSAP.

Semi-supervised Node Classification
Datasets. We conducted experiments on standard node
classification datasets (in Table 1) that provide connected
and undirected graphs. Cora, Citeseer and Pubmed (Sen
et al. 2008) are constructed as citation networks, Amazon
Computer and Amazon Photo (Shchur et al. 2018) define co-
purchase networks, and Coauthor CS (Shchur et al. 2018) is
a co-authorship network.

Dataset Nodes Edges Classes Features
Cora 2,708 5,429 7 1,433

Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

Amazon Computers 13,752 245,861 10 767
Amazon Photo 7,650 119,081 8 745
Coauthor CS 18,333 81,894 15 6,805

Table 1: Summary of node classification datasets.

Setup. We used the accuracy as the evaluation metric. For
Cora, Citseer and Pubmed data, eighteen different baselines
were used to compare the results for the node classification
task as listed in Table 2. These standard benchmarks are pro-
vided with fixed split of 20 nodes per class for training, 500
nodes for validation and 1000 nodes for testing as in other
literature (Kim et al. 2022; Wu et al. 2022b).

For Amazon and Coauthor datasets, seven baselines are
used as in Table 3. For the MLP with 3-layers, GCN and
3ference, results are obtained from (Luo et al. 2022), and a
result for DSF comes from (Guo et al. 2023). For others, the
experiments were performed by randomly splitting the data
as 60%/20%/20% for training/validation/testing datasets as
in (Luo et al. 2022) and replicating it 10 times to obtain mean
and standard deviation of the evaluation metric.

Results. Table 2 and 3 show the performance compar-
isons between LSAP and baseline models. As shown in
Table 2, on the node classification benchmarks, learning
node-wise adaptive scale performs the best in both Ex-
act and its approximations. LSAP showed improved perfor-
mance over existing models; exceeding previous best base-
line performances by 2.4% (on Cora) and 1.1% (on Citeseer
and Pubmed) The similar performance of LSAP with that
of Exact demonstrates accurate convolution approximation.
Despite slight decreases, training on adaptive scales using
LSAP was much faster.

For additional datasets in Table 3, the performance of
LSAP outperformed the baselines. The results for MLP,
GCN and 3ference were adopted from (Luo et al. 2022),
which reported the best performance out of 10 replicated
experiments. We ran the same experiments for GAT, GDC,
GraphHeat, Exact and LSAP, and the mean and standard de-
viation of metrics are given. LSAP shows significant im-
provements on the Amazon Computer (94.43%, LSAP-C)
and Amazon Photo (96.65%, LSAP-H). On the Coauther

Model Cora Citeseer Pubmed
GCN (Kipf et al. 2017) 81.50 70.30 78.60
GAT (Veličković et al. 2018) 83.00 72.50 79.00
APPNP (Klicpera et al. 2019b) 83.30 71.80 80.10
GDC† (Klicpera et al. 2019a) 82.20 71.80 79.10
SGC (Wu et al. 2019) 81.70 71.30 78.90
Bayesian GCN (Zhang et al. 2019a) 81.20 72.20 -
Shoestring (Lin, Gao, and Li 2020) 81.90 69.50 79.70
GraphHeat† (Xu et al. 2020) 83.70 72.50 80.50
g-U-Nets (Gao et al. 2019) 84.40 73.20 79.60
GCNII (Chen et al. 2020) 85.50 73.40 80.30
GRAND (Feng et al. 2020) 85.40 75.40 82.70
DAGNN (Liu et al. 2020) 84.40 73.30 80.50
SelfSAGCN (Yang et al. 2021) 83.80 73.50 80.70
DIAL-GNN (Chen et al. 2021) 84.50 74.10 -
SuperGAT (Kim et al. 2022) 84.30 72.60 81.70
GRAND† (Chamberlain et al. 2021) 83.60 74.10 78.80
ADC† (Zhao et al. 2021) 84.50 74.50 83.00
SEP-N (Wu et al. 2022b) 84.80 72.90 80.20
LSAP-C 87.90 76.50 83.30
LSAP-H 85.00 76.10 82.60
LSAP-L 85.90 75.90 84.10
Exact 88.20 78.10 85.30

†: graph diffusion-based models.

Table 2: Accuracy (%) on Cora, Citeseer, and Pubmed.
LSAP yields better performances over existing baselines (in
bold) similar to Exact achieving the best results (underline).

Model Amazon Amazon Coauthor
Computer Photo CS

MLP (3-layers) 84.63 91.96 95.63
GCN 90.49 93.91 93.32
3ference 90.74 95.05 95.99
GAT 91.18 ± 0.74 94.49 ± 0.54 93.42 ± 0.31
GDC 86.03 ± 2.26 93.28 ± 1.03 92.68 ± 0.53
GraphHeat 89.59 ± 3.15 94.04 ± 0.75 92.93 ± 0.20
DSF 92.84 ± 0.10 95.73 ± 0.08 -
LSAP-C 94.43 ± 1.16 95.96 ± 1.65 94.81 ± 0.55
LSAP-H 93.64 ± 0.86 96.65 ± 0.67 93.52 ± 0.97
LSAP-L 92.76 ± 0.48 95.35 ± 0.85 93.58 ± 0.82
Exact 93.52 ± 0.65 96.41 ± 1.54 93.71 ± 1.16

Table 3: Mean node classification accuracy (%) and s.d. on
Amazon Computers, Amazon Photo, and Coauthor CS. The
best results are in bold, and the best results within experi-
ments with replicates are underlined.

CS, we also achieve the highest mean accuracy (94.81%,
LSAP-C) among the experiments with random replicates.

Graph Classification
Datasets. Using the magnetic resonance images (MRI)
from the ADNI data, each brain was partitioned into 148
cortical regions and 12 sub-cortical regions using Destrieux
atlas (Destrieux et al. 2010), and tractography on diffusion-
weighted imaging (DWI) was applied to calculate the num-
ber of white matter fibers connecting the 160 brain regions
to construct 160 × 160 structural network (i.e., graph). On
the same parcellation, region-wise imaging features such as
Standard Uptake Value Ratio (SUVR) of metabolism level
from FDG-PET and cortical thickness from MRI were mea-
sured. For the SUVR normalization, Cerebellum was used
as the reference. The dataset consists of 5 AD-specific pro-
gressive groups: Control (CN), Significant Memory Concern
(SMC), Early Mild Cognitive Impairment (EMCI), Late
Mild Cognitive Impairment (LMCI) and AD. The demo-
graphics of ADNI dataset are summarized in Table 4.

Setup. 5-way classification was designed to classify the
different groups in Table 4. 5-fold cross validation was
used to obtain unbiased results, and accuracy, precision,
and recall in their mean were used as evaluation metrics.
As the baseline, we adopted Linear Support Vector Ma-
chine (SVM), Multi-Layer Perceptron (MLP) with 2 lay-
ers, GCN (Kipf et al. 2017), GAT (Veličković et al. 2018),
GDC (Klicpera et al. 2019a), GraphHeat (Xu et al. 2020)
and ADC (Zhao et al. 2021). Each sample is given with a
graph (i.e., brain network) and two node features (i.e., cor-
tical thickness and FDG measure) which are well-known as
useful biomarkers for AD diagnosis.

Biomarker Category CN SMC EMCI LMCI AD

Cortical
Thickness

of subjects 359 181 437 180 166
Gender (M / F) 178 / 181 69 / 112 249 / 188 119 / 61 102 / 64

Age (Mean±Std) 72.8±1.4 72.0±5.2 71.0±7.9 70.9±6.1 74.8±8.7

FDG
of subjects 345 186 461 231 162

Gender (M / F) 173 / 172 66 / 120 262 / 199 152 / 79 102 / 60
Age (Mean±Std) 73.0±1.3 71.7±5.2 71.7±7.8 71.1±7.0 74.9±8.8

Table 4: Demographics of the ADNI dataset.

Feature Model Classification (ADNI)
Accuracy (%) Precision Recall

Cortical
Thickness

SVM (Linear) 82.39 ± 2.73 0.822 ± 0.033 0.852 ± 0.025
MLP (2-layers) 78.76 ± 2.21 0.792 ± 0.036 0.799 ± 0.026
GCN 61.37 ± 3.09 0.598 ± 0.025 0.626 ± 0.044
GAT 64.17 ± 5.46 0.627 ± 0.067 0.668 ± 0.046
GDC 77.10 ± 4.25 0.769 ± 0.050 0.785 ± 0.044
GraphHeat 70.90 ± 3.17 0.703 ± 0.030 0.718 ± 0.026
ADC 82.10 ± 2.41 0.776 ± 0.019 0.728 ± 0.067
LSAP-C 87.00 ± 2.16 0.868 ± 0.027 0.885 ± 0.027
LSAP-H 85.41 ± 2.32 0.859 ± 0.031 0.867 ± 0.030
LSAP-L 85.64 ± 1.86 0.859 ± 0.022 0.866 ± 0.022
Exact 86.24 ± 1.96 0.866 ± 0.017 0.867 ± 0.023

FDG

SVM (Linear) 85.27 ± 2.09 0.857 ± 0.027 0.869 ± 0.021
MLP (2-layers) 87.51 ± 1.62 0.882 ± 0.024 0.882 ± 0.014
GCN 68.81 ± 1.95 0.677 ± 0.028 0.697 ± 0.025
GAT 69.24 ± 7.13 0.670 ± 0.106 0.736 ± 0.037
GDC 86.21 ± 3.24 0.867 ± 0.033 0.870 ± 0.029
GraphHeat 76.97 ± 2.42 0.775 ± 0.035 0.773 ± 0.010
ADC 88.60 ± 2.81 0.708 ± 0.062 0.753 ± 0.053
LSAP-C 89.24 ± 2.23 0.895 ± 0.022 0.904 ± 0.023
LSAP-H 90.11 ± 2.44 0.903 ± 0.027 0.910 ± 0.022
LSAP-L 90.40 ± 1.38 0.909 ± 0.018 0.914 ± 0.015
Exact 90.18 ± 2.67 0.907 ± 0.028 0.907 ± 0.028

Table 5: Classification performances on ADNI dataset.

Results. The performances including accuracy, precision,
and recall between LSAP and seven baselines on the ADNI
dataset are shown in Table 5. LSAP showed accuracy ∼86%
using cortical thickness and ∼90% with FDG in classify-
ing the 5 diagnostic stages of AD, with precision and re-
call ∼0.86 and 0.91, respectively. These numbers are ap-
proximately the same with the results from Exact and low
standard deviations from LSAP demonstrate feasibility of
the approximation. LSAP performed the best surpassing the
second best methods by 4.61%p and 1.80%p in accuracy for
cortical thickness and FDG experiments, respectively.

Model Behavior Analysis
Computation Time with Kernel Convolution. Fig. 2
compares averaged empirical time (in ms) spent for one
epoch of training process of Exact and LSAP on node classi-
fication task (on Cora, Citesser and Pubmed) and graph clas-
sification task (on ADNI) with 10 replicates. The colors de-
note the type of methods, and as seen in Fig. 2, LSAP takes

Cora Citeseer

Pubmed ADNI

Figure 2: Comparisons of computation time (in ms) for one
epoch (Forward and backpropagation). Within the epoch,
time for heat kernel convolution is given in black bar. Re-
sults were obtained with 10 repetitions.

Exact LSAP-C LSAP-H LSAP-L

Figure 3: Visualization of the learned scales on the cortical regions of a brain. This visualization shows the scale of each ROI
from the classification result using FDG feature. Top: Inner part of right hemisphere, Bottom: Outer part of right hemisphere.

ROI (Destrieux et al. 2010) Exact LSAP-C LSAP-H LSAP-L
(L) G&S.paracentral 0.034 0.052 0.049 0.066
(L) G.front.inf.Orbital 0.036 0.071 0.060 0.043
(R) G.precuneus 0.041 0.044 0.034 0.051
(R) S.ortibal.med.olfact 0.047 0.078 0.054 0.059
(R) G.cingul.Post.ventral 0.055 0.056 0.055 0.051
(R) S.oc.temp.lat 0.055 0.065 0.045 0.063
(R) G.oc.temp.med.Lingual 0.055 0.076 0.043 0.040
(L) Sub.put 0.058 0.077 0.047 0.060
(L) S.postcentral 0.061 0.069 0.060 0.018
(R) G.front.inf.Orbital 0.063 0.093 0.069 0.050

Table 6: 10 ROIs with the smallest trained scales for AD
classification. (L)/(R) denote the left/right hemisphere.

far less time than Exact computation. Notice that the com-
putation of kernel convolution takes the majority of time (in
black bar), and the approximations make this process effi-
cient. For the node classification, approximation on Pubmed
showed the best efficiency as its graph had the largest num-
ber of nodes (19717) compared to Cora (2708) and Citeseer
(3327). For the graph classification, approximations were
even more efficient as eigendecomposition of L̂ from all sub-
jects had to be performed for Exact. Comparing the compu-
tation time of a single epoch on Exact and LSAP-L, the time
is saved by ∼93%.

Discussions on the Scales for Graph Classification. In
AD classification, we performed graph classification to dis-
tinguish the different diagnostic labels of AD. The trained
model yields node-wise optimized scale where the node cor-
responds to specific region of interest (ROI) in the brain. The
trained scales denote the optimal ranges of neighborhood for
each ROI. Therefore, if the trained scale is small for a spe-
cific node, it means that the node does not have to look far to
contribute to the classification. On the other hand, the nodes
with large scales need to aggregate information from far dis-
tances to constitute an effective embedding as it is not very
useful on its own. The trained scales on the brain network
classification with Exact and LSAP are visualized in Fig. 3
conveying two important perspectives. First, the scales de-
lineate which of the ROIs are independently behaving to
classify AD-specific labels. Second, the trained scales with
LSAP are quite similar to the result from Exact meaning that
the approximation is feasibly accurate for practical uses.

Cora ADNI

Figure 4: Effect of the number of layers K on model perfor-
mance. Left: accuracy of node classification on Cora, Right:
accuracy of graph classification on ADNI.

In Table 6, 10 ROIs with the smallest scales that appear in
common across Exact and LSAPs are listed. Inferior frontal
orbital gyrus on both hemispheres is captured, and several
temporal/orbital regions, precuneous, and left putamen are
shown to yield small scales. These ROIs are known as highly
AD-specific by various literature (Galton et al. 2001; Bailly
et al. 2015; de Jong et al. 2008; Hoesen et al. 2000).

Effect of K. We examined the performance of LSAP with
respect to the number of convolution layers K on Cora and
ADNI experiments. When K was varied from 1 to 4 under
the same setting, K=2 showed the best performance in both
experiments. The performance decreases when K=3 and 4
may be due to lack of training samples as the model sizes are
drastically increased. We observed the same pattern across
Exact and LSAP, which demonstrates LSAP with approxi-
mation is able to train on the scales properly.

Conclusions
In this work, we proposed efficient trainable methods to by-
pass exact computation of spectral kernel convolution that
define adaptive ranges of neighbor for each node. We have
derived closed-form derivatives on polynomial coefficients
to train the scale with conventional backpropagation, and
the developed framework LSAP demonstrates SOTA perfor-
mance on node classification and brain network classifica-
tion. The brain network analysis provides neuroscientifically
interpretable results corroborated by previous AD literature.

Acknowledgments
This research was supported by NRF-2022R1A2C2092336
(50%), IITP-2022-0-00290 (20%), IITP-2019-0-01906 (AI
Graduate Program at POSTECH, 10%) funded by MSIT,
HU22C0171 (10%), HU22C0168 (10%) funded by MOHW
from South Korea, and NSF IIS CRII 1948510 from the U.S.

References
Bailly, M.; Destrieux, C.; Hommet, C.; Mondon, K.; Cot-
tier, J.-P.; Beaufils, E.; Vierron, E.; Vercouillie, J.; Ibazizene,
M.; Voisin, T.; et al. 2015. Precuneus and cingulate cortex
atrophy and hypometabolism in patients with Alzheimer’s
disease and mild cognitive impairment: MRI and 18F-FDG
PET quantitative analysis using FreeSurfer. BioMed re-
search international, 2015.
Bastings, J.; Titov, I.; Aziz, W.; Marcheggiani, D.; and
Sima’an, K. 2017. Graph Convolutional Encoders for
Syntax-aware Neural Machine Translation. In EMNLP,
1957–1967. Copenhagen, Denmark: Association for Com-
putational Linguistics.
Chamberlain; et al. 2021. Grand: Graph neural diffusion. In
ICML, 1407–1418. PMLR.
Chen; et al. 2018. Fastgcn: fast learning with graph convo-
lutional networks via importance sampling. ICLR.
Chen; et al. 2020. Simple and deep graph convolutional net-
works. In International Conference on Machine Learning,
1725–1735. PMLR.
Chen; et al. 2021. Deep iterative and adaptive learning for
graph neural networks. AAAI.
Chung; et al. 1997. Spectral graph theory, volume 92.
American Mathematical Soc.
de Jong, L. W.; van der Hiele, K.; Veer, I. M.; Houwing, J.;
Westendorp, R.; Bollen, E.; de Bruin, P. W.; Middelkoop, H.;
van Buchem, M. A.; and van der Grond, J. 2008. Strongly
reduced volumes of putamen and thalamus in Alzheimer’s
disease: an MRI study. Brain, 131(12): 3277–3285.
Destrieux; et al. 2010. Automatic parcellation of human cor-
tical gyri and sulci using standard anatomical nomenclature.
Neuroimage, 53(1): 1–15.
Feng, W.; Zhang, J.; Dong, Y.; Han, Y.; Luan, H.; Xu, Q.;
Yang, Q.; Kharlamov, E.; and Tang, J. 2020. Graph random
neural networks for semi-supervised learning on graphs.
NeurIPS, 33: 22092–22103.
Galton, C. J.; Patterson, K.; Graham, K.; Lambon-Ralph,
M. A.; Williams, G.; Antoun, N.; Sahakian, B.; and
Hodges, J. 2001. Differing patterns of temporal atrophy
in Alzheimer’s disease and semantic dementia. Neurology,
57(2): 216–225.
Gao; et al. 2019. Graph u-nets. In international conference
on machine learning, 2083–2092. PMLR.
Guo; et al. 2023. Graph Neural Networks with Diverse Spec-
tral Filtering. In WWW.
Hammond; et al. 2011. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analy-
sis, 30(2): 129–150.

He; et al. 2022. Convolutional Neural Networks on Graphs
with Chebyshev Approximation, Revisited. NeurIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hoesen, V.; et al. 2000. Orbitofrontal cortex pathology in
Alzheimer’s disease. Cerebral Cortex, 10(3): 243–251.
Huang; et al. 2020. Fast polynomial approximation of heat
kernel convolution on manifolds and its application to brain
sulcal and gyral graph pattern analysis. IEEE transactions
on medical imaging, 39(6): 2201–2212.
Huang; et al. 2023. Node-wise Diffusion for Scalable Graph
Learning. In WWW.
Huang, L.; Ma, D.; Li, S.; Zhang, X.; and Wang, H.
2019. Text level graph neural network for text classification.
EMNLP-IJCNLP.
Kim; et al. 2022. How to find your friendly neighborhood:
Graph attention design with self-supervision. ICLR.
Kipf; et al. 2017. Semi-supervised classification with graph
convolutional networks. ICLR.
Klicpera; et al. 2019a. Diffusion improves graph learning.
NeurIPS.
Klicpera; et al. 2019b. Predict then propagate: Graph neural
networks meet personalized pagerank. ICLR.
Lee; et al. 2023. Time-aware random walk diffusion to im-
prove dynamic graph learning. In AAAI.
Lin; et al. 2021. Medley: Predicting Social Trust in Time-
Varying Online Social Networks. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications, 1–
10. IEEE.
Lin, W.; Gao, Z.; and Li, B. 2020. Shoestring: Graph-based
semi-supervised classification with severely limited labeled
data. In CVPR, 4174–4182.
Liu; et al. 2016. Graph-based semisupervised learning
for acoustic modeling in automatic speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(11): 1946–1956.
Liu; et al. 2020. Towards deeper graph neural networks. In
KDD, 338–348.
Luo, Y.; Luo, G.; Yan, K.; and Chen, A. 2022. Infer-
ring from References with Differences for Semi-Supervised
Node Classification on Graphs. Mathematics, 10(8): 1262.
Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; and Clark, C. W.
2010. NIST handbook of mathematical functions hardback
and CD-ROM. Cambridge university press.
Oppenheim, A. V.; Buck, J.; Daniel, M.; Willsky, A. S.;
Nawab, S. H.; and Singer, A. 1997. Signals & systems. Pear-
son Educación.
Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The
PageRank citation ranking: Bringing order to the web. Tech-
nical report, Stanford InfoLab.
Qi, X.; Liao, R.; Jia, J.; Fidler, S.; and Urtasun, R. 2017. 3d
graph neural networks for rgbd semantic segmentation. In
ICCV, 5199–5208.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of Graph Neural Network Evaluation.
NeurIPS.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. ICLR.
Verma; et al. 2018. Feastnet: Feature-steered graph convo-
lutions for 3d shape analysis. In CVPR.
Wei; et al. 2020. View-gcn: View-based graph convolutional
network for 3d shape analysis. In CVPR, 1850–1859.
Wu; et al. 2019. Simplifying graph convolutional networks.
In ICML, 6861–6871. PMLR.
Wu; et al. 2022a. Nodeformer: A scalable graph structure
learning transformer for node classification. NeurIPS, 35:
27387–27401.
Wu, J.; Chen, X.; Xu, K.; and Li, S. 2022b. Structural en-
tropy guided graph hierarchical pooling. In International
Conference on Machine Learning, 24017–24030. PMLR.
Xie, G.-S.; Liu, J.; Xiong, H.; and Shao, L. 2021. Scale-
aware graph neural network for few-shot semantic segmen-
tation. In CVPR, 5475–5484.
Xu, B.; Shen, H.; Cao, Q.; Cen, K.; and Cheng, X. 2020.
Graph convolutional networks using heat kernel for semi-
supervised learning. IJCAI.
Yang, X.; Deng, C.; Dang, Z.; Wei, K.; and Yan, J. 2021.
SelfSAGCN: self-supervised semantic alignment for graph
convolution network. In CVPR, 16775–16784.
Zhang; et al. 2019a. Bayesian graph convolutional neural
networks for semi-supervised classification. In AAAI, vol-
ume 33, 5829–5836.
Zhang; et al. 2019b. ProNE: Fast and Scalable Network
Representation Learning. In IJCAI, volume 19, 4278–4284.
Zhang; et al. 2023. ApeGNN: Node-Wise Adaptive Aggre-
gation in GNNs for Recommendation. In WWW.
Zhao; et al. 2021. Adaptive diffusion in graph neural net-
works. NeurIPS, 34: 23321–23333.

