
Learning to Approximate Adaptive Kernel Convolution on Graphs
Jaeyoon Sim1 Sooyeon Jeon1 InJun Choi1 Guorong Wu2 Won Hwa Kim1

1Pohang University of Science and Technology, Pohang, South Korea
2University of North Carolina at Chapel Hill, Chapel Hill, USA

INTRODUCTION

▶ Key Idea: Training on the node-wise range of neighborhood efficiently instead of
excessively stacking convolutional layer.

▶ Problem 1: Oversmoothed node representations.
• Most of existing GNNs have limitations such as oversmoothing, i.e., information becomes
excessively averaged as the number of hidden layers increases.

▶ Problem 2: Inefficient computation to construct diffusion kernel.
• Recent works leverage a diffusion kernel to redefine the graph structure and incorporate
information from farther nodes. However, such methods suffer from heavy diagonlization of
a graph Laplacian or learning a large transform matrix.

▶ Contribution:
1. We propose a GNN with an adaptive diffusion kernel whose approximations are
trainable in an end-to-end manner at each node.
2. We derive closed-form derivatives of various polynomial coefficients with respect to the
range (i.e., scale) so that graph convolution can be efficiently trained.
3. Learning on scales provides interpretable results on the semantics of each node,
validated on two independent datasets with different tasks.

PRELIMINARY: APPROXIMATION OF CONVOLUTION WITH HEAT KERNEL

▶ An undirected graph G = {V ,E} comprises a node set V with |V | = N and an edge set E ,
and a graph Laplacian is defined as L = D − A where D is a degree matrix and A is a
symmetric adjacency matrix. An normalized Laplacian is defined as L̂ = IN − D−1/2AD−1/2

where IN is an identity matrix.
▶ Approximation of heat kernel convolution was introduced using several orthogonal

polynomials (such as Chebyshev, Hermite, and Laguerre), and the analytic solutions to the
polynomial coefficient cs,n for scale s were derived for corresponding polynomial Pn where
n denotes the degree of each polynomial.

▶ Using convolution theorem, graph Fourier transform offers a way to define the graph
convolution ∗ of a signal x(p) with a filter hs. The heat kernel e−sλ can be defined with Pn
and cs,n as e−sλ =

∑∞
n=0 cs,nPn(λ), and now the solution to the heat diffusion can be

expressed in terms of Pn and cs,n as

hs ∗ x(p) =
∞∑

n=0

cs,nPn(L̂)x(p). (1)

LEARNING TO APPROXIMATE KERNEL CONVOLUTION

Figure: Illustration of LSAP. A graph (as normalized Laplacian L̂) and node feature X are inputted to the
convolution layer. The output HK is inputted to a downstream classifier which yields a prediction Ŷ . The loss from
Ŷ is backpropagated to update the classifier and convolution approximation with s = [s1, . . . , sN] to adaptively
adjust the scale of each node.

▶ We introduce our model, i.e., LSAP, that trains on the approximations for the optimal range
of neighborhood at individual nodes.

▶ Convolution Layer: We can reformulate convolution operation by replacing the adjacency
matrix from most GCN frameworks with the heat kernel with polynomial approximation as

Hk = σk([
m∑

n=0

cs,nPn(L̂)]Hk−1Wk). (2)

While A let the model combine information from nodes within 1-hop distance, Eq.(2) let it
aggregate information within a “range” of each node defined by s within cs,n.

▶ Gradients of Polynomial Coefficients with Scale: In order to design a gradient-based
“learning” framework of node-wise range (i.e., scale) based on coefficients, we derived
gradients of loss with respect to the scale in closed-forms. The gradient can be achieved
using the chain rule in a traditional way, and to obtain this gradient in terms of the Hk , we
compute ∂cs,n

s for each coefficient.

▶ Model Update: The loss is backpropagted to update the model parameters, and a
multi-variate s across all nodes can be also trained as s← s− βs

∂L
∂s .

• The gradient on scale for semi-supervised node classification can be computed as
∂Lerr

∂s
=(Ŷ − Y)× σ

′

k([
m∑

n=0

cs,nPn(L̂)]Hk−1Wk)W T
k

× (
m∑

n=0

Pn(L̂)HT
k−1 + [

m∑
n=0

cs,nPn(L̂)]
∂Hk−1

∂cs,n
)
∂cs,n

∂s

(3)

• The gradient on scale for graph classification can be computed as
∂Lerr

∂s
=(Ŷ − Y)× ∂HR

∂HK
× σ

′

k([
m∑

n=0

cs,nPn(L̂)]Hk−1Wk)W T
k

× (
m∑

n=0

Pn(L̂)HT
k−1 + [

m∑
n=0

cs,nPn(L̂)]
∂Hk−1

∂cs,n
)
∂cs,n

∂s

(4)

where HR is output layer transforming node embeddings to a graph embedding.
▶ LSAP-C, LSAP-H, and LSAP-L correspond to approximation frameworks with each

polynomial Pn and expansion coefficient cs,n, and the model with exact computation of the
heat kernel convolution is referred as Exact.

NODE/GRAPH CLASSIFICATION DATASET

▶ Semi-supervised Node Classification - 6 standard datasets
▶ Graph Classification - Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
• Diagnostic labels: Control (CN), Significant Memory Concern (SMC), Early/Late Mild
Cognitive Impairment (EMCI/LMCI), Alzheimer’s Disease (AD)

Dataset Nodes Edges Classes Features
Cora 2,708 5,429 7 1,433

Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

Amazon Computers 13,752 245,861 10 767
Amazon Photo 7,650 119,081 8 745
Coauthor CS 18,333 81,894 15 6,805

Biomarker Category CN SMC EMCI LMCI AD

Cortical
Thickness

of subjects 359 181 437 180 166
Gender (M / F) 178 / 181 69 / 112 249 / 188 119 / 61 102 / 64

Age (Mean±Std) 72.8±1.4 72.0±5.2 71.0±7.9 70.9±6.1 74.8±8.7

FDG
of subjects 345 186 461 231 162

Gender (M / F) 173 / 172 66 / 120 262 / 199 152 / 79 102 / 60
Age (Mean±Std) 73.0±1.3 71.7±5.2 71.7±7.8 71.1±7.0 74.9±8.8

Table: Left: Summary of node classification datasets. Right: Demographics of the ADNI dataset.

CLASSIFICATION PERFORMANCE

Model Cora Citeseer Pubmed
GCN 81.50 70.30 78.60
GAT 83.00 72.50 79.00
APPNP 83.30 71.80 80.10
GDC† 82.20 71.80 79.10
SGC 81.70 71.30 78.90
Bayesian GCN 81.20 72.20 -
Shoestring 81.90 69.50 79.70
GraphHeat† 83.70 72.50 80.50
g-U-Nets 84.40 73.20 79.60
GCNII 85.50 73.40 80.30
GRAND 85.40 75.40 82.70
DAGNN 84.40 73.30 80.50
SelfSAGCN 83.80 73.50 80.70
DIAL-GNN 84.50 74.10 -
SuperGAT 84.30 72.60 81.70
GRAND† 83.60 74.10 78.80
ADC† 84.50 74.50 83.00
SEP-N 84.80 72.90 80.20
LSAP-C 87.90 76.50 83.30
LSAP-H 85.00 76.10 82.60
LSAP-L 85.90 75.90 84.10
Exact 88.20 78.10 85.30

†: graph diffusion-based models.

Feature Model
Classification (ADNI)

Accuracy (%) Precision Recall

Cortical
Thickness

SVM (Linear) 82.39 ± 2.73 0.822 ± 0.033 0.852 ± 0.025
MLP (2-layers) 78.76 ± 2.21 0.792 ± 0.036 0.799 ± 0.026
GCN 61.37 ± 3.09 0.598 ± 0.025 0.626 ± 0.044
GAT 64.17 ± 5.46 0.627 ± 0.067 0.668 ± 0.046
GDC 77.10 ± 4.25 0.769 ± 0.050 0.785 ± 0.044
GraphHeat 70.90 ± 3.17 0.703 ± 0.030 0.718 ± 0.026
ADC 82.10 ± 2.41 0.776 ± 0.019 0.728 ± 0.067
LSAP-C 87.00 ± 2.16 0.868 ± 0.027 0.885 ± 0.027
LSAP-H 85.41 ± 2.32 0.859 ± 0.031 0.867 ± 0.030
LSAP-L 85.64 ± 1.86 0.859 ± 0.022 0.866 ± 0.022
Exact 86.24 ± 1.96 0.866 ± 0.017 0.867 ± 0.023

FDG

SVM (Linear) 85.27 ± 2.09 0.857 ± 0.027 0.869 ± 0.021
MLP (2-layers) 87.51 ± 1.62 0.882 ± 0.024 0.882 ± 0.014
GCN 68.81 ± 1.95 0.677 ± 0.028 0.697 ± 0.025
GAT 69.24 ± 7.13 0.670 ± 0.106 0.736 ± 0.037
GDC 86.21 ± 3.24 0.867 ± 0.033 0.870 ± 0.029
GraphHeat 76.97 ± 2.42 0.775 ± 0.035 0.773 ± 0.010
ADC 88.60 ± 2.81 0.708 ± 0.062 0.753 ± 0.053
LSAP-C 89.24 ± 2.23 0.895 ± 0.022 0.904 ± 0.023
LSAP-H 90.11 ± 2.44 0.903 ± 0.027 0.910 ± 0.022
LSAP-L 90.40 ± 1.38 0.909 ± 0.018 0.914 ± 0.015
Exact 90.18 ± 2.67 0.907 ± 0.028 0.907 ± 0.028

Table: Left: Accuracy (%) on Cora, Citeseer, and Pubmed. LSAP yields better performances over existing
baselines (in bold) similar to Exact achieving the best results (underline). Right: Classification performances on
ADNI dataset (for CN / SMC / EMCI / LMCI / AD).

MODEL BEHAVIOR ANALYSIS

▶ Scales for Graph Classification
• The trained model yields node-wise optimized scale where the node corresponds to
specific regions of interest (ROI) in the brain.

Figure: Visualization of the learned scales on the cortical regions of a brain. This visualization shows the scale of
each ROI from the classification result using FDG feature. Top: Inner part of right hemisphere, Bottom: Outer part
of right hemisphere.

▶ Computation Time with Kernel Convolution
•We compared averaged empirical time (in ms) spent for one epoch of training process
Exact and LSAP on node and graph classification task with 10 replicates.

▶ Effect of K
•We examined the performance of LSAP with respect to the number of convolution layers
K on Cora and ADNI experiments.

Figure: Left: Comparisons of computation time (in ms) for one epoch (Forward and backpropagation). Within the
epoch, time for heat kernel convolution is given in black bar. Results were obtained with 10 repetitions. Right:
Effect of the number of layers K on model performance (Cora and ADNI).

CONCLUSION

In this work, we proposed efficient trainable methods to bypass exact computation of spectral
kernel convolution that define adaptive ranges of neighbor for each node. We have derived
closed-form derivatives on polynomial coefficients to train the scale with conventional
backpropagation, and the developed framework LSAP demonstrates SOTA performance on
node classification and brain network classification. The brain network analysis provides
neuroscientifically interpretable results corroborated by previous AD literature.

ACKNOWLEDGMENT

This research was supported by NRF-2022R1A2C2092336 (50%), IITP-2022-0-00290 (20%),
IITP-2019-0-01906 (AI Graduate Program at POSTECH, 10%) funded by MSIT, HU22C0171
(10%), HU22C0168 (10%) funded by MOHW from South Korea, and NSF IIS CRII 1948510
from the U.S.

The 38th Annual AAAI Conference on Artificial Intelligence 2024

