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ABSTRACT
Characterizing a preclinical stage of Alzheimer’s Disease

(AD) via single imaging is difficult as its early symptoms are
quite subtle. Therefore, many neuroimaging studies are cu-
rated with various imaging modalities, e.g., MRI and PET,
however, it is often challenging to acquire all of them from all
subjects and missing data become inevitable. In this regards,
in this paper, we propose a framework that generates unob-
served imaging measures for specific subjects using their ex-
isting measures, thereby reducing the need for additional ex-
aminations. Our framework transfers modality-specific style
while preserving AD-specific content. This is done by do-
main adversarial training that preserves modality-agnostic but
AD-specific information, while a generative adversarial net-
work adds an indistinguishable modality-specific style. Our
proposed framework is evaluated on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study and compared with
other imputation methods in terms of generated data quality.
Small average Cohen’s d < 0.19 between our generated mea-
sures and real ones suggests that the synthetic data are practi-
cally usable regardless of their modality type.

1. INTRODUCTION

Early diagnosis of an irreversible neurodegenerative disease
such as Alzheimer’s Disease (AD) is critical to delay its pro-
gression. Images are often used to observe structures and
functions of the brain, however, the diagnosis with a single
imaging modality [1, 2] is challenging as the changes in pre-
clinical stages such as Mild Cognitive Impairment (MCI) are
very subtle. Using multiple modalities will definitely help
improve confidence in the diagnosis, as the imaging scans are
based on different underlying mechanisms and reflect differ-
ent aspects of the disease such as brain structure (e.g., cortical
thickness), metabolism (e.g., FDG) and protein accumulation
(e.g., Tau and β-amyloid).

Despite the usefulness of adopting multiple modalities, it
is practically infeasible as obtaining various imaging scans is
time-consuming, costly, and burdening to each subject. This
can be a significant barrier for patients who are potentially at
risk of developing AD from MCI, as the high cost of imag-
ing will discourage them from medical attention. In practice,
affordable magnetic resonance imaging (MRI) is first taken
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Fig. 1: An overview of our framework. In Content Extraction, modality-
agnostic embedding is extracted from any type of feature for the subject. In
Style Injection, modality-specific generators can generate missing features
not present in the original subject. Shape: imaging scan (i.e., domain), Color:
AD-stage label (i.e.,class).

and, expensive Positron Emission Tomography (PET) scans
with various tracers are recommended where MCI-specific
changes are differently characterized by accumulation of pro-
teins. In such a scenario, if we can accurately impute mea-
sures of unobserved modalities from existing ones, e.g., gen-
erating expensive fluorodeoxyglucose (FDG) measures from
inexpensive MRI, then it would help better analysis of a pa-
tient without going through burdening imaging protocols at a
significantly reduced cost.

Recent studies revealing high correlations between dif-
ferent imaging modalities for AD analyses demonstrate that
the scenario above is potentially feasible [3, 4, 5, 6]. Several
works [7, 8] focused on this correlation and tried to generate
PET scans from MRI scans by directly applying basic genera-
tive adversarial network (GAN) or cycleGAN [9]. Other mod-
els such as conditional GAN (cGAN) [10] and Wasserstein
GAN (WGAN) [11] can be an option, however, it is difficult
to naively utilize them as the number of required generators
will increase as a combination of the number of modalities.
Traditional approaches such as Mean imputation [12] are still
a golden standard even though they are unrealistic.

Although the progression of AD from MCI is differently
characterized by different modalities and radiotracers, they
should commonly contain AD-specific information at AD-
specific regions of interest (ROI) which we consider as “con-
tent”. We focus on this modality invariant content; we de-
sign an architecture that first projects a sample to a modal-
ity agnostic latent space, and the modality-agnostic embed-
ding is put on with different realistic styles of various imaging
modalities. With the proposed model, our goal is to univer-
sally generate various imaging measures for each subject that
accurately reflects both the modality and AD-related infor-
mation to impute missing data, without exhaustively training
one-to-one mapping between different modalities.
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Fig. 2: Illustration of our framework. (a) Content extraction, (b) Style injection. In (a), our framework trains embedding extractor to obtain domain-agnostic
embedding which still contain label-specific information. In (b), our framework endeavors to train generators from extracted domain-agnostic embedding to
generate realistic measures.

Key Contributions: 1) Our method generates proba-
ble estimation of unobserved imaging measures for specific
subjects using their existing measures. 2) To the best of
our knowledge, our method is the first to address numerical
data imputation via style transfer. 3) Experimental results
on ADNI data demonstrate that the data generated by our
method can offer sufficiently realistic information for down-
stream analyses.

2. METHOD

Consider a dataset where each sample is expressed as multi-
variate measures taken from multiple imaging scans. If a sub-
ject skips some scans, which is common in many cohorts, then
the sample ends up with missing data that discredits down-
stream analyses. To fully utilize such data, in this section, we
propose a novel framework that completes the measures from
missing modalities by imputing those for each subject based
on their existing measurements. This is done by extracting
modality-agnostic embedding with content only (e.g., target
variable), and then training generators that equip realistic rep-
resentations according to a specific modality. Our proposed
framework consists of two consecutive parts: (i) modality-
agnostic content extraction, and (ii) modality-wise style injec-
tion as illustrated in Fig. 1, and their details are given below.

2.1. Phase1 - Content Extraction
In this phase, our framework aims to train an embedding ex-
tractor E to extract a modality-agnostic embedding from data.
This embedding has semantic component as a ‘content’ that
is task-specific information (e.g., AD-specific biomarker) that
is invariant to the domain-shift (e.g., modality). For this, do-
main adversarial training [13] is executed to make E learn
modality-agnostic latent space.

Consider a subject going through S different imaging
scans, and P -dimensional measurements (from P brain re-
gions) are derived from individual scans. Then, the k-th
sample is given as xk ∈ RS×P , where xk,s ∈ RP is de-
noted as a modality-specific data for the k-th subject and yk
is its corresponding diagnostic label. If the subject skips s-th
scan, the whole xk,s becomes missing. To train E to extract
modality-invariant disease-specific contents, individual xk,s

is used to train the E to become agnostic on s.
The embedding E(xk,s) is made modality-agnostic using

AD-diagnostic label classifier CLC and modality classifier
CDC . The E(xk,si) and E(xk,sj ) should be similar where
si ̸= sj and si, sj ∈ {1, 2, · · · , S} for a specific subject k.
Concurrently, CLC is expected to accurately predict class la-
bels, whereas CDC should exhibit uncertainty in distinguish-
ing the type of imaging scans. Thus, we use two loss functions
LLC and LDC corresponding to CLC and CDC respectively:

LLC = J (yk, CLC(E(xk,s))), LDC = J (s, CDC(E(xk,s))) (1)

where J is a loss function (e.g. Cross-Entropy). While CLC

and CDC are trained from LLC and LDC independently, E
is updated in the direction of decreasing LLC and increas-
ing LDC . We adopt the gradient reversal layer [13] that con-
verts the sign of gradient between E and CDC to make E re-
move the modality-specific information, such that its imaging
modality cannot be distinguished by CDC but still accurately
classifiable on its diagnostic label by CLC .
2.2. Phase 2 - Style Injection
In the context of style transfer [14, 15], the term ‘style’ refers
to modality-specific information that encompasses various as-
pects of data distinct from the content. In section 2.1, content
was defined as task-specific information that is invariant to
the modality type. Thus, style needs to contain a modality-
specific information which is shared among data from the
same modality. To combine the given content with a target
style for the imputation, style needs to be added to the con-
tent without affecting the original content. Notice that the
number of pairs increases as a combination of the number of
styles, i.e., modalities, if we were to naively train pair-wise
generation between different modalities. However, as shown
in Fig. 2(b), because we extract modality-agnostic represen-
tation from 2.1, we only need to train S number of generator
and discriminator pairs (Gt, Dt) where t ∈ {1, 2, · · ·S} de-
notes a specific modality type.

Training a (Gt, Dt) pair requires separate inputs. To
train Gt, all existing xi,s, where i ∈ {1, 2, · · · ,K} and
s ∈ {1, 2, · · · , S}, are fed to E to produce E(xi,s), which
is used as a seed to generate fake sample Gt(E(xi,s)) which
facilitates training of Gt. To train Dt, all real xj,t are taken
conditioned on a target modality t, if j-th sample has t-th
feature. The xj,t and Gt(E(xi,s)) are fed into Dt for real-
and-fake discrimination, and Gt is trained to deceive Dt by
generating realistic data that mimics the target modality. At



the same time, Dt is trained adversarially to differentiate real
and fake. This can be expressed using the minimax loss as
min
Gt

max
Dt

Ex∼pdata(xj,t)
[logDt(x)]+Ez∼pdata(xi,s)

[1−logDt(Gt(E(z)))].

(2)
To optimize Eq. (2), each loss for training Dt and Gt are for-
mulated as
LDt (xj,t, xi,s) =− logDt(xj,t)− log (1−Dt(Gt(E(xi,s)))), (3)

LGt (xi,s) =− logDt(Gt(E(xi,s))). (4)

To ensure that the generated measures by Gt retain the con-
tent with a target modality style, Lcontent is defined as a L2-
norm between the original embedding E(xi,s) and that of the
generated data x̂i,t = Gt(E(xi,s)) given by

Lcontent = ∥E(xi,s)− E(x̂i,t)∥2. (5)

By minimizing Eq (5), Gt is guided to preserve content while
generating a sample of a particular modality. Our full objec-
tive for training Gt is a combination of LGt

and Lcontent as
Ltotal = αLGt + βLcontent (6)

where α and β are user-parameters. With Ltotal, each gener-
ator is enabled to incorporate modality-specific style into the
given content.

2.3. Imputation Procedure
Assume that a subject k has missing feature xk,si . Our frame-
work can generate x̂k,si from an existing feature xk,sj for
si ̸= sj , utilizing the trained content extractor E and style
generator Gsi . In this way, we ensure that all K subjects have
every feature for S modalities for full utilization of the data.

3. EXPERIMENTAL RESULTS

3.1. Datasets
We evaluate our method on four imaging measures from
MRI and PET scans from the ADNI study [16]. Each image
was partitioned into 148 cortical and 12 sub-cortical regions
using Destrieux atlas [17]. For each parcellation, region-
specific imaging features including Standard Uptake Value
Ratio (SUVR) [18] of metabolic activity from FDG-PET,
β-amyloid protein from Amyloid-PET (β-Amy), Tau protein
from Tau-PET and cortical thickness (CT) from MRI were
measured. Cerebellum [19] was used as the reference region
to standardize the SUVR values across the brain. Table 1
presents the demographics for each measure, including sub-
jects who have taken all the imaging scans. A total of N=222
subjects have all scanned data from MRI to PET, which
served as the baseline. The diagnostic labels for each subject
include cognitive normal (CN), early mild cognitive impair-
ment (EMCI), and late mild cognitive impairment (LMCI),
which we used to design the 3-way classification.

Table 1: Sample-size of ADNI dataset for Different Modalities.

Label
Modality

CT Tau FDG β-Amy Common
Subjects

CN 805 237 861 735 97
EMCI 486 186 597 833 87
LMCI 248 105 1138 447 38

3.2. Experiment setup
Baselines. We utilized Mean imputation [12] as a classical
method, which imputed the missing values by replacing them
with the class-specific means for each imaging scan. Promi-
nent generative models such as cGAN [10] and WGAN [11]
also serve as baselines. To apply the generative models for
imputation, we trained generators for all pairs (i.e., 16 pairs)
of imaging modalities.
Training. For E, CLC , CDC , Gt and Dt, Multi-Layer Per-
ceptron (MLP) with 5, 2, 2, 13 and 5 layers were chosen. We
used AdamW [20] optimizer with learning rate 10−3, except
for Dt with 10−5. Weight decay at 0.01 was adopted for ev-
ery linear layer. In Phase 1, we set the embedding size to 256
and trained E, CLC and CDC with 8×103 epoches. In Phase
2, each Gt and Dt pair was trained with 3× 104 epoches in a
9-to-1 ratio iteratively. In Ltotal, α and β were 1 and 100.
Evaluation. We utilized MLP with 2, 3 and 4 layers as our
backbone network, progressively getting larger, for the down-
stream classification denoted as 2-MLP, 3-MLP and 4-MLP
respectively. For training of phase 1 and 2 (for E, Gt and
Dt), only the samples with missing measures were used to
avoid double dipping for a downstream task. In the down-
stream classification, samples with missing data using impu-
tation methods including ours were utilized during the train-
ing. The experiments were performed with 5-fold cross vali-
dation (CV) to obtain unbiased results.

To evaluate the performance, we employed multi-class ac-
curacy, weighted precision and recall averaged across the CV.
Each baseline was implemented and trained to achieve op-
timal outcomes for fair comparisons. To verify whether the
generated data are realistic, we computed the similarity be-
tween the actual and generated measurements for each modal-
ity using Cohen’s d [21].

3.3. Quantitative Results
The averaged Cohen’s d over all ROIs are reported in Table 2,
and their visualization on EMCI subjects are given in Fig. 3.
The effect sizes of the data generated by our modality-specific

Table 2: The average absolute Cohen’s d across all the ROIs between
actual and generated distributions. Lower values are better, and the values
≤ 0.2 are in bold.

Modality
(Actual)

Modality
(Generated)

Ours cGAN [10] WGAN [11]
CN EMCI LMCI CN EMCI LMCI CN EMCI LMCI

CT

CT 0.238 0.219 0.239 0.458 0.516 0.496 0.414 0.192 0.162
Tau 0.122 0.142 0.358 0.315 0.425 0.401 0.212 0.081 0.222
FDG 0.141 0.216 0.231 0.216 0.380 0.431 0.255 0.274 0.063
β-Amy 0.105 0.135 0.211 0.400 0.296 0.460 0.108 0.105 0.248

Tau

CT 0.192 0.245 0.259 0.520 0.466 0.471 0.085 0.237 0.432
Tau 0.138 0.129 0.379 0.151 0.149 0.224 0.349 0.116 0.369
FDG 0.133 0.206 0.185 0.346 0.378 0.635 0.103 0.132 0.158
β-Amy 0.088 0.107 0.121 0.194 0.309 0.173 0.123 0.271 0.461

FDG

CT 0.237 0.217 0.167 0.572 0.644 0.512 0.168 0.188 0.193
Tau 0.158 0.140 0.447 0.373 0.423 0.371 0.161 0.458 0.487
FDG 0.142 0.213 0.146 0.442 0.442 0.297 0.228 0.209 0.250
β-Amy 0.110 0.106 0.167 0.265 0.300 0.415 0.161 0.150 0.411

β-Amy

CT 0.209 0.185 0.288 0.604 0.665 0.872 0.186 0.486 0.716
Tau 0.139 0.139 0.391 0.267 0.333 0.290 0.423 0.645 0.888
FDG 0.142 0.189 0.178 0.368 0.496 0.629 0.076 0.166 0.135
β-Amy 0.152 0.103 0.137 0.372 0.386 0.402 0.249 0.063 0.292

Mean 0.152 0.168 0.244 0.366 0.413 0.442 0.206 0.235 0.342
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Fig. 3: Visualization of the averaged absolute Cohen’s d between actual
distribution and generated distribution on the inner left cortical regions of
EMCI subjects. AD-specific regions show better imputation results as lower
Cohen’s d implies higher correspondence. (Row: Source, Column: Target.)

generators were small, i.e., 0.188 on average, far less than
0.407 and 0.261 from individually trained cGAN and WGAN,
demonstrating the feasibility of our generated data.

The primary difference between our method and other
generative models is the number of generators required for
imputation. Unlike our framework only needs S generators
through modality-agnostic embedding, other conventional
generative methods need S2 generators for the same task.
When the sample size is small, training multiple generators
can be challenging, whereas our method successfully trains
the generators using modality-agnostic embeddings.

3.4. Qualitative Results
In Fig. 4, we visualized a generated sample (standardized at
each ROI), along with the true measurements from a subject
in the CN group. We selected a subject who underwent all
imaging scans and was not used during generator training to
provide ground truth for our estimation. From CT of this sub-
ject, CT, Tau, FDG and β-amyloid measures were generated
and compared with the ground truth. Although we did not
train the model with modality pairs from the same subject as
they are insufficient, our model generated every ROI accu-
rately toward observed measurement, as visualized in Fig. 4
(bottom).

3.5. Downstream MCI Classification Performance
In Table 3, we reported the performance of the downstream
classification with 5-fold CV. The MLP using imputed data
from our framework outperformed all other baselines in ac-
curacy and weighted recall across every MLP classifiers.
Our approach showed an accuracy increase over the base-
line in 2-MLP (0.022), 3-MLP (0.026) and 4-MLP (0.040),
indicating that generated samples enable to train larger mod-
els. However, as we stacked more layers for classifier, there
was little increase in performance over the baseline with
mean imputation, indicating that its generated data are lim-
ited. While usability of mean imputation was limited to

Cortical Thickness Tau FDG β-Amyloid

True

Imputed

Distance

Fig. 4: Visual comparison of observed measurement (Top) and our estima-
tion (Middle) on the inner view of left hemisphere from a CN subject. Our
estimations were generated from observed CT measurement of the subject.
All measurements were standardized, and the distance between ground truth
and generated result are given at the bottom. BrainPainter [22] was used to
generate the drawings.

downstream classification, our primary competitors were
cGAN and WGAN as they generate subject-wise estimation.
Regardless of the model size, our model showed superior
performance in terms of accuracy and weighted recall over
cGAN and WGAN. This could be because the two generative
baselines were trained using fewer samples and lacked any
precautions against mode-collapse, unlike our approach that
incorporates content loss.

Table 3: Classification performance (CN/EMCI/LMCI) on ADNI data
with all modalities. The number of generators required are given in ().

Model Method
Imputation

Concept
Performance

Accuracy Precision Recall

2-MLP

Baseline No Imputation 0.776 ± 0.032 0.794 ± 0.030 0.776 ± 0.032
Mean Representative Value 0.792 ± 0.081 0.806 ± 0.052 0.792 ± 0.081
cGAN [10] Generative Model (16) 0.784 ± 0.092 0.743 ± 0.183 0.784 ± 0.092
WGAN [11] Generative Model (16) 0.797 ± 0.075 0.834 ± 0.072 0.797 ± 0.075
Ours Generative Model (4) 0.798 ± 0.040 0.789 ± 0.048 0.798 ± 0.040

3-MLP

Baseline No Imputation 0.785 ± 0.039 0.811 ± 0.032 0.785 ± 0.039
Mean Representative Value 0.802 ± 0.096 0.790 ± 0.087 0.802 ± 0.096
cGAN [10] Generative Model (16) 0.805 ± 0.076 0.809 ± 0.095 0.805 ± 0.076
WGAN [11] Generative Model (16) 0.784 ± 0.072 0.770 ± 0.093 0.784 ± 0.072
Ours Generative Model (4) 0.811 ± 0.061 0.791 ± 0.076 0.811 ± 0.061

4-MLP

Baseline No Imputation 0.785 ± 0.018 0.804 ± 0.018 0.785 ± 0.018
Mean Representative Value 0.788 ± 0.084 0.771 ± 0.092 0.788 ± 0.084
cGAN [10] Generative Model (16) 0.788 ± 0.105 0.766 ± 0.105 0.788 ± 0.105
WGAN [11] Generative Model (16) 0.792 ± 0.054 0.796 ± 0.093 0.792 ± 0.056
Ours Generative Model (4) 0.825 ± 0.018 0.793 ± 0.051 0.825 ± 0.018

4. CONCLUSION

In this paper, we propose a novel framework that generates
unobserved imaging measures for specific subjects using
their existing measures. To reduce the need for taking sev-
eral imaging scans, our framework addresses the imputation
of missing measures by transferring modality-specific style
while preserving AD-specific content. Experimental results
on the ADNI study show that our model provides a probable
estimation of target modality for individual subjects, which
yields similar distributions of generated measurements to
those from observed data and helps downstream analyses.
Since our work is applicable regardless of modality type, our
approach has the potential to be adopted by other neuroimag-
ing studies that are limited by missing measures.
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