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MAIN IDEA

▶ Problem: Accurately discriminating progressive stages of Alzheimer’s Disease (AD) is
crucial, but missing data from multiple imaging modalities hinder robust analyses.

▶ Question: How can we impute missing neuroimaging features while maintaining disease
progression information for Alzheimer’s diagnosis?

▶ Solution: Holistic imaging feature imputation method leveraging Ordinal Contrastive
Learning (OCL) to align modality-independent embeddings with disease progression.

Contribution 1. Our method accurately estimates unobserved imaging measures for
individual subjects using their existing data to solidify downstream analyses.
Contribution 2. We introduce ordinal contrastive learning, which aligns samples in the
embedding space based on their disease severity.
Contribution 3. The experiments on ADNI data show that our method accurately
translates data, capturing realistic information for subsequent analyses.

ORDINAL CONTRASTIVE LEARNING (OCL)
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Figure: Comparison of supervised (left) and ordinal (right) contrastive learning: Both approaches contrast the set
of all samples from the same class as positives against the negatives from the rest of the batch. While supervised
contrastive learning repels each negative without differentiation on labels denoted as (a) ≈ (b) ≈ (c), ordinal
contrastive learning assigns the penalizing strength based on the label distance.

▶ In Supervised Contrastive Learning (SCL), single τ controls the strength of separation,
ignoring the degree of differences between each label. The SCL loss is given by:

LSC =
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log
exp(zi · zp/τ )∑

p∈P(i)
exp(zi · zp/τ ) +

∑
n∈N(i)

exp(zi · zn/τ ) (1)

▶ Considering that values of diagnostic label y ∈ {1, · · · ,V} are aligned according to their
severity (e.g., i-th subject is more severe than n-th subject if yi > yn), we define a function
d(yi, yn) measuring the distance between two labels as |yi − yn|.

▶ We make τi,n dependent on yi ,· and yn,· as τ/d(i ,n) to penalize greater label distance.

▶ To prevent the collapse or dispersion of the embedding space, the magnitude of gradient
w.r.t positives and negatives should be the same. By the gradient analysis detailed in the
supplementary material, τi ,P between zi and zp is set as

τi ,P =

∑
n∈N(i)

exp(zi ,· · zn,·/τi ,n)∑
n∈N(i)

exp(zi ,· · zn,·/τi ,n)/τi ,n
. (2)

▶ By setting adaptive τi ,n for each zn,· and unique τi ,P for every zp,·, we formulate our ordinal
contrastive loss LOC as

LOC =
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log
exp(zi · zp/τi ,P)∑

q∈P(i)
exp(zi · zq/τi ,P) +

∑
n∈N(i)

exp(zi · zn/τi ,n)
. (3)

Embedding Visualization
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Figure: Visualizations of embeddings under each loss by t-SNE. Each individual encoder is trained with three
distinct losses including Cross-Entropy LCE (left), Supervised Contrastive Loss LSC (center) and our Ordinal
Contrastive Loss LOC (right) along with domain adversarial loss LDA. (a) and (b) correspond to training and
testing data respectively. (Color: AD-stage labels, Shape: imaging scan types.)

ACKNOWLEDGMENT

This research was supported by NRF-2022R1A2C2092336 (50%), RS-2022-II2202290 (20%),
RS-2019-II191906 (AI Graduate Program at POSTECH, 10%) funded by MSIT, RS-2022-KH127855 (10%),
RS-2022-KH128705 (10%) funded by MOHW from South Korea.

IMPUTATION FRAMEWORK
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Figure: Overall scheme of our multi-scale learning network. Input X is transformed to a high-dimensional space
with kernels g(s) and Principal Components U (i.e., convolution) and fed to a downstream classifier (solid line).
The S and classifier are trained to obtain the optimal task-specific multi-scale representation (dashed line).

▶ Ordinal Contrastive Learning (LOC): Train E to arrange each sample in the embedding
space by the orders to accurately characterize disease progression.

▶ Domain Adversarial Training (LDA): Train E to eliminate modality-specific information
associated with s from zk ,s = E(xk ,s). The modality adversarial loss LDA is defined as

LDA = J (s,CDC(E(xk ,s))), (4)

where J represents a suitable loss function (e.g., Cross-entropy).

▶ Modality-wise coherence within a subject maximization (LMC): Train E using a
similarity function sim(·, ·) (e.g., cosine similarity) as

LMC =

∑K
k=1

∑
i ,j∈{1,··· ,S}

i ̸=j
−δk(i , j) · sim(xk ,i, xk ,j)∑K

k=1
∑

i ,j∈{1,··· ,S}
i ̸=j

δk(i , j)
(5)

where δk(i , j) is an indicator function defined as δk(i , j) = 1 if both xk ,i and xk ,j exist for
subject k , and δk(i , j) = 0 otherwise.

Encoder Loss: LE = LDA + LOC + LMC (6)

▶ Due to LDA and LMC, the loss LD for modality translation can be approximated as

Decoder Loss: LD(xk ,t) = ||xk ,t − D([E(xk ,t), ct])||2 (7)

ADNI DATASET

Table: Sample-size per modality of ADNI dataset.

Label CT TAU FDG AMY Common
CN 844 237 861 735 123

EMCI 490 186 597 833 102
LMCI 250 105 1138 447 40
AD 240 85 755 422 10

Total 1824 613 3351 2437 275

▶ The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study provides magnetic
resonance image (MRI) and positron emission tomography (PET).

▶ Images were partitioned into 148 cortical and 12 sub-cortical regions using Destrieux atlas.
▶ 4 AD-specific progressive groups: cognitively Normal (CN), Early Mild Cognitive

Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer’s Disease (AD).

EXPERIMENTAL RESULTS

Experiment 1: Group Comparisons

(a) Before imputation (b) After imputation 0.0
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Modality CN vs EMCI EMCI vs LMCI LMCI vs AD
(a) (b) (a) (b) (a) (b)

Cortical Thickness 59 88 (57) 24 64 (20) 55 131 (55)
Tau 0 84 (0) 1 22 (1) 9 99 (9)
FDG 48 83 (44) 77 94 (75) 139 119 (119)
β-Amyloid 32 70 (27) 6 78 (6) 144 152 (144)

Figure: p-values from group comparisons with Bonferroni correction at α = 0.01: (a) before imputation, (b) after
imputation from our model. Top: Resutant p-value maps on a brain surface (left hemisphere) in a −log10 from CN
and EMCI comparison with cortical thickness, and (b) shows higher sensitivity. Bottom: Number of significant
ROIs. Number of common ROIs before-and-after imputation are in ().

Experiment 2: Classifcation Performance
Table: Classification performance on ADNI data with all imaging features.

Classifier MLP (2 layers) MLP (4 layers)
Method Accuracy Precision Recall Accuracy Precision Recall
No Imputation 0.673±0.030 0.659±0.025 0.673±0.030 0.698±0.048 0.707±0.047 0.698±0.048
Class-wise Mean 0.753±0.050 0.778±0.041 0.753±0.050 0.775±0.036 0.771±0.032 0.775±0.036
MICE 0.739±0.043 0.761±0.046 0.739±0.043 0.814±0.043 0.761±0.046 0.814±0.043
MissForest 0.721±0.061 0.753±0.080 0.721±0.061 0.832±0.025 0.844±0.024 0.832±0.025
Sinkhorn 0.776±0.044 0.799±0.041 0.776±0.044 0.829±0.033 0.847±0.041 0.829±0.033
GAIN 0.752±0.029 0.766±0.022 0.752±0.029 0.795±0.054 0.805±0.050 0.795±0.054
Pair-wise MLPs 0.756±0.030 0.782±0.036 0.756±0.030 0.782±0.062 0.799±0.060 0.782±0.062
SCL 0.813±0.042 0.812±0.051 0.813±0.042 0.845±0.020 0.851±0.038 0.845±0.020
Ours (LOC) 0.826±0.029 0.829±0.021 0.826±0.029 0.851±0.046 0.862±0.051 0.851±0.046
Ours (LOC + LMC) 0.829±0.042 0.839±0.041 0.829±0.042 0.854±0.025 0.862±0.024 0.854±0.025

27th INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION (MICCAI 2024)


