

**OCL: Ordinal Contrastive Learning for

Baek^{1*} Jaeyoon Sim^{1*} Guorong Wu² Won Hwa Kim¹ Imputating Features with Progressive Labels**

Seunghun Baek 1^* Jaeyoon Sim^{1*} Guorong Wu² Won $Hwa Kim¹$

> *Equal Contribution ¹ Pohang University of Science and Technology, South Korea ²University of North Carolina at Chapel Hill, USA

MAIN IDEA

- ▶ Problem: Accurately discriminating progressive stages of Alzheimer's Disease (AD) is crucial, but missing data from multiple imaging modalities hinder robust analyses.
- ▶ Question: How can we impute missing neuroimaging features **while maintaining disease progression information for Alzheimer's diagnosis**?
- ▶ Solution: Holistic imaging feature imputation method leveraging Ordinal Contrastive Learning (OCL) to align modality-independent embeddings with disease progression.

Contribution 1. Our method accurately estimates unobserved imaging measures for individual subjects using their existing data to solidify downstream analyses. **Contribution 2.** We introduce ordinal contrastive learning, which aligns samples in the embedding space based on their disease severity. **Contribution 3.** The experiments on ADNI data show that our method accurately translates data, capturing realistic information for subsequent analyses.

 \blacktriangleright In Supervised Contrastive Learning (SCL), single τ controls the strength of separation, ignoring the degree of differences between each label. The SCL loss is given by:

▶ Considering that values of diagnostic label $y \in \{1, \dots, V\}$ are aligned according to their severity (e.g., *i*-th subject is more severe than *n*-th subject if *yⁱ* > *yn*), we define a function *d*(*yⁱ* , *yn*) measuring the distance between two labels as |*yⁱ* − *yn*|.

ORDINAL CONTRASTIVE LEARNING (OCL)

- ▶ We make τ_i , *n* dependent on $y_{i,}$ and $y_{n,}$ as $\tau/d(i, n)$ to penalize greater label distance.
- ▶ To prevent the collapse or dispersion of the embedding space, the magnitude of gradient w.r.t positives and negatives should be the same. By the gradient analysis detailed in the supplementary material, τ*i*,*^P* between *zⁱ* and *z^p* is set as

 \blacktriangleright By setting adaptive $\tau_{i,n}$ for each $z_{n,n}$ and unique $\tau_{i,p}$ for every $z_{p,n}$, we formulate our ordinal contrastive loss L*OC* as

Figure: Comparison of supervised (left) and ordinal (right) contrastive learning: Both approaches contrast the set of all samples from the same class as positives against the negatives from the rest of the batch. While supervised contrastive learning repels each negative without differentiation on labels denoted as $(a) \approx (b) \approx (c)$, ordinal contrastive learning assigns the penalizing strength based on the label distance.

$$
\mathcal{L}_{SC} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(z_i \cdot z_p/\tau)}{\sum_{p \in P(i)} \exp(z_i \cdot z_p/\tau) + \sum_{n \in N(i)} \exp(z_i \cdot z_n/\tau)}
$$

- **Ordinal Contrastive Learning (** \mathcal{L}_{OC} **):** Train *E* to arrange each sample in the embedding space by the orders to accurately characterize disease progression.
- ▶ **Domain Adversarial Training (** \mathcal{L}_{DA}): Train *E* to eliminate modality-specific information associated with *s* from $z_{k,s} = E(x_{k,s})$. The modality adversarial loss \mathcal{L}_{DA} is defined as

(1)

• Modality-wise coherence within a subject maximization (\mathcal{L}_{MC}) **:** Train *E* using a similarity function *sim*(·, ·) (e.g., cosine similarity) as

$$
\tau_{i,P} = \frac{\sum_{n \in N(i)} \exp(z_{i,\cdot} \cdot z_{n,\cdot}/\tau_{i,n})}{\sum_{n \in N(i)} \exp(z_{i,\cdot} \cdot z_{n,\cdot}/\tau_{i,n})/\tau_{i,n}}.
$$
\n(2)

$$
\mathcal{L}_{OC} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(z_i \cdot z_p/\tau_{i,P})}{\sum_{q \in P(i)} \exp(z_i \cdot z_q/\tau_{i,P}) + \sum_{n \in N(i)} \exp(z_i \cdot z_n/\tau_{i,n})}.
$$

- ▶ The Alzheimer's Disease Neuroimaging Initiative (ADNI) study provides magnetic resonance image (MRI) and positron emission tomography (PET).
- ▶ Images were partitioned into 148 cortical and 12 sub-cortical regions using Destrieux atlas.
- ▶ 4 AD-specific progressive groups: cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI) and Alzheimer's Disease (AD).

(3)

Embedding Visualization

Figure: Visualizations of embeddings under each loss by t-SNE. Each individual encoder is trained with three distinct losses including Cross-Entropy \mathcal{L}_{CE} (left), Supervised Contrastive Loss \mathcal{L}_{SC} (center) and our Ordinal Contrastive Loss \mathcal{L}_{OC} (right) along with domain adversarial loss \mathcal{L}_{DA} . (a) and (b) correspond to training and testing data respectively. (Color: AD-stage labels, Shape: imaging scan types.)

imputation from our model. Top: Resutant *p*-value maps on a brain surface (left hemisphere) in a −*log*₁₀ from CN and EMCI comparison with cortical thickness, and (b) shows higher sensitivity. Bottom: Number of significant ROIs. Number of common ROIs before-and-after imputation are in ().

ACKNOWLEDGMENT

This research was supported by NRF-2022R1A2C2092336 (50%), RS-2022-II2202290 (20%), RS-2019-II191906 (AI Graduate Program at POSTECH, 10%) funded by MSIT, RS-2022-KH127855 (10%), RS-2022-KH128705 (10%) funded by MOHW from South Korea.

IMPUTATION FRAMEWORK

Figure: Overall scheme of our multi-scale learning network. Input *X* is transformed to a high-dimensional space with kernels *g*(*s*) and Principal Components *U* (i.e., convolution) and fed to a downstream classifier (solid line). The *S* and classifier are trained to obtain the optimal task-specific multi-scale representation (dashed line).

$$
\mathcal{L}_{DA}=\mathcal{J}(s,C_{DC}(E(x_{k,s}))),
$$
 (4)

$$
\mathcal{L}_{MC} = \frac{\sum_{k=1}^{K} \sum_{\substack{i,j \in \{1,\cdots,S\} \\ i \neq j}} -\delta_k(i,j) \cdot \text{sim}(x_{k,i}, x_{k,j})}{\sum_{k=1}^{K} \sum_{\substack{i,j \in \{1,\cdots,S\} \\ i \neq j}} \delta_k(i,j)}
$$

where $\delta_k(i, j)$ is an indicator function defined as $\delta_k(i, j) = 1$ if both $x_{k,j}$ and $x_{k,j}$ exist for subject *k*, and $\delta_k(i, j) = 0$ otherwise.

Encoder Loss: $\mathcal{L}_E = \mathcal{L}_{DA} + \mathcal{L}_{OC} + \mathcal{L}_{MC}$ (6)

 \blacktriangleright Due to \mathcal{L}_{DA} and \mathcal{L}_{MC} , the loss \mathcal{L}_D for modality translation can be approximated as

 $\textbf{Decoder Loss: } \mathcal{L}_D(\textit{X}_{k,t}) = ||\textit{X}_{k,t} - D([E(\textit{X}_{k,t}), \textit{C}_{t}])||^2$

(5)

(7)

where J represents a suitable loss function (e.g., Cross-entropy).

ADNI DATASET

EXPERIMENTAL RESULTS

Experiment 1: Group Comparisons

Figure: *p*-values from group comparisons with Bonferroni correction at $\alpha = 0.01$: (a) before imputation, (b) after

Experiment 2: Classifcation Performance

Table: Classification performance on ADNI data with all imaging features.

27th INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION (MICCAI 2024)