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INTRODUCTION

▶ Key Idea: Guiding diffusion process at each node by a downstream
transformer via diffusion-kernel and multi-head attention.

▶ Problem: Limitations in interpreting the brain networks in a scenario with
multiple imaging biomarkers.
• Convolutional approaches ineffectively aggregate information from distant nodes,
while attention-based methods exhibit deficiencies in capturing node-centric
information, particularly in retaining critical properties from pivotal nodes.
• These shortcomings reveal challenges for identifying disease-specific variation
from diverse features from different modalities.

▶ Contribution:
• Proposing a novel framework to aggregate both short- and long- range properties
for better prediction of graph labels.
• Demonstrating superior performance on graph classification in comparisons to the
state-of-the-art methods.
• Showing interpretability on the brain networks in a scenario with multiple imaging
biomarkers.

PRELIMINARY: GRAPH KERNEL CONVOLUTION

▶ An undirected graph G = {V ,E} with N nodes comprises a node set V and an edge
set E . A symmetric adjacency matrix A and a diagonal degree matrix D can be
computed from E . A graph Laplacian is defined as L = D − A. It has a complete set
of orthonormal eigenvectors U = [u1|u2|...|uN] and corresponding real and
non-negative eigenvalues 0 = λ1 ≤ ... ≤ λN, so does the normalized Laplacian
L̂ = D−1/2LD−1/2.

▶ From Spectral Graph Theory, the choice of a kernel function determines specific
graph characteristics. A heat-kernel between nodes p and q is spanned by U as

hs(p,q) =
N∑

i=1

e−sλiui(p)ui(q) (1)

where ui is the i-th eigenvector. The kernel e−sλi captures smooth transition
between nodes within the scale s as a low-pass filter. Graph Fourier transform, i.e.,
x̂ = UTx , defines the graph convolution ∗ of a signal x(p) with a filter hs as

hs ∗ x(p) =
N∑

i=1

e−sλix̂(i)ui(p) (2)

whose band-width is controlled by the scale s.

GNN WITH TRANSFORMER-GUIDED ADAPTIVE DIFFUSION (GTAD)

Figure: Illustration of our framework (GTAD). A novel end-to-end framework GTAD that learns
node-centric parameters of a diffusion kernel which are governed by a transformer.

▶ Modality-wise Adaptive Convolution Block. Consider G given as L̂ ∈ RN×N, a set
of features (i.e., imaging measures) X = {xm}M

m=1 defined on N nodes from M
modalities, a set of trainable scales {sm}M

m=1 where sm ∈ RN and a graph label Y .
Each encoder consists of multiple graph convolution layers that adaptively
aggregate features for each node with a non-linear activation function σz as

Hm
z = σz(e−smL̂Hm

z−1W m
z ). (3)

▶ Modality-wise Self-Attention Block. The obtained embeddings {Hm
Z }M

m=1 are
inputted to an attention block to compute node-wise attention scores. Using the
self-attention scores, a self-attention value is computed as

ϕ(Qm,K m,V m) = σ(
QmK mT

√
C

)V m. (4)

▶ Transformer-Guided Scale Update. To update a scale sm
n at the n-th node for the

m-th encoder, the objective function is defined by cross-entropy between the true
value Ytj and the prediction Ŷtj.

L = −1
T

T∑
t=1

J∑
j=1

Ytj lnŶtj + α
1
M

M∑
m=1

N∑
n=1

1s<0|sm
n |. (5)

Update of the modality-specific scales is performed as s ← s − β∂L
∂s via

gradient-descent with a learning rate β.

ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE (ADNI)

▶ On the same parcellation, region-wise imaging features such as Standard Uptake
Value Ratio (SUVR) of metabolic intensity from FDG-PET, β-Amyloid protein from
Amyloid-PET and cortical thickness from MRI were measured.

▶ Diagnostic labels: Control (CN), Significant Memory Concern (SMC), Early Mild
Cognitive Impairment (EMCI)

Table: Demographics of the preclinical ADNI dataset.

Category CN SMC EMCI
# of subjects 333 172 414

Gender (Male / Female) 156 / 177 62 / 110 240 / 174
Age (Mean±Std) 73.0 ± 5.9 71.7 ± 5.2 71.0 ± 7.7

CLASSIFICATION RESULT
Table: Preclinical AD classification performance (CN/SMC/EMCI) on ADNI data.

Modalities Cortical Thickness & β-Amyloid Cortical Thickness & FDG
Methods Accuracy Precision Recall Accuracy Precision Recall
GCN 0.861±0.04 0.772±0.06 0.780±0.06 0.873±0.02 0.802±0.02 0.813±0.03
GAT 0.896±0.01 0.827±0.03 0.839±0.02 0.882±0.02 0.811±0.03 0.844±0.03
GraphHeat 0.868±0.02 0.777±0.05 0.797±0.04 0.887±0.03 0.821±0.04 0.834±0.03
GDC 0.858±0.02 0.767±0.03 0.786±0.04 0.842±0.01 0.743±0.02 0.765±0.03
ADC 0.906±0.02 0.835±0.03 0.861±0.04 0.896±0.01 0.831±0.01 0.847±0.02
LSAP 0.911±0.01 0.847±0.03 0.872±0.02 0.934±0.02 0.899±0.05 0.904±0.03
NodeFormer 0.916±0.02 0.856±0.04 0.865±0.02 0.944±0.01 0.913±0.03 0.921±0.02
DIFFormer 0.930±0.01 0.877±0.03 0.900±0.02 0.954±0.01 0.923±0.02 0.944±0.01
SGFormer 0.941±0.01 0.894±0.03 0.911±0.02 0.959±0.01 0.931±0.01 0.945±0.01
GTAD (Ours) 0.945±0.02 0.901±0.03 0.919±0.02 0.963±0.01 0.935±0.02 0.948±0.01
Modalities β-Amyloid & FDG All Imaging Features
Methods Accuracy Precision Recall Accuracy Precision Recall
GCN 0.880±0.01 0.806±0.02 0.813±0.02 0.888±0.02 0.816±0.02 0.826±0.02
GAT 0.877±0.02 0.815±0.03 0.814±0.04 0.912±0.01 0.858±0.02 0.864±0.02
GraphHeat 0.880±0.02 0.804±0.05 0.824±0.03 0.893±0.02 0.824±0.03 0.839±0.03
GDC 0.866±0.02 0.787±0.03 0.790±0.03 0.867±0.02 0.779±0.03 0.799±0.02
ADC 0.910±0.01 0.865±0.02 0.856±0.02 0.904±0.02 0.855±0.04 0.858±0.02
LSAP 0.922±0.02 0.862±0.05 0.893±0.03 0.912±0.01 0.844±0.04 0.879±0.02
NodeFormer 0.931±0.01 0.887±0.03 0.893±0.03 0.938±0.02 0.900±0.03 0.902±0.03
DIFFormer 0.951±0.01 0.919±0.03 0.933±0.02 0.953±0.01 0.920±0.02 0.936±0.02
SGFormer 0.954±0.01 0.923±0.03 0.936±0.02 0.951±0.01 0.911±0.02 0.933±0.02
GTAD (Ours) 0.962±0.01 0.935±0.02 0.946±0.02 0.963±0.01 0.943±0.01 0.941±0.02

INTERPRETATION OF THE TRAINED GTAD
▶ Discussion on the Scales
• The trained model yields node-wise optimized scales, where each node
corresponds to a specific ROI in the brain.

Figure: Visualization of learned scales on the cortical regions of left (top) and right (bottom) hemispheres.

▶ Pre-clinical AD via ROI Attention
• From the attention block, each ROI gains long-range characteristics from other
ROIs by modality-wise attention mechanism.
• Most relevant ROIs in Preclinical AD prediction can be detected by total attention
scores that represent the intensity of attention at each ROI in the brain.

Figure: Distribution of attention scores across all brain regions with cortical thickness (left), β-Amyloid
(center) and FDG (right).

▶ Ablation Study on the Blocks
• To explore the effect of each block, ablation study on convolution types and
attention types for preclinical AD classification is given.

Table: Performance comparisons of different blocks. For attention block, our multi-modal (MM) attention
and existing position-wise attention are compared.

Convolution Block MM Attention Accuracy Precision Recall

Multi-Layer Perceptron
✗ 0.939±0.03 0.893±0.05 0.913±0.04
✓ 0.947±0.02 0.906±0.04 0.933±0.02

Graph Convolution Layer
✗ 0.899±0.01 0.835±0.03 0.849±0.03
✓ 0.900±0.01 0.834±0.03 0.852±0.02

Adaptive Convolution Layer (Ours)
✗ 0.945±0.03 0.903±0.05 0.922±0.04
✓ 0.963±0.01 0.943±0.01 0.941±0.02
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