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INTRODUCTION

ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE (ADNI)

» Key Ildea: Guiding diffusion process at each node by a downstream
transformer via diffusion-kernel and multi-head attention.

» On the same parcellation, region-wise imaging features such as Standard Uptake
Value Ratio (SUVR) of metabolic intensity from FDG-PET, 5-Amyloid protein from
Amyloid-PET and cortical thickness from MRI were measured.

» Diagnostic labels: Control (CN), Significant Memory Concern (SMC), Early Mild
Cognitive Impairment (EMCI)

Table: Demographics of the preclinical ADNI dataset.

» Problem: Limitations in interpreting the brain networks in a scenario with
multiple imaging biomarkers.

e Convolutional approaches ineffectively aggregate information from distant nodes,
while attention-based methods exhibit deficiencies in capturing node-centric

information, particularly in retaining critical properties from pivotal nodes. Category CN SMC EMCI

e These shortcomings reveal challenges for identifying disease-specific variation # of subjects 333 172 414

from diverse features from different modalities. Gender (Male / Female) 156 /177 62 /110 240 /174
Age (Mean+Std) 73.0 + 5.9 71.7 £ 5.2 71.0 + 7.7

» Contribution:
e Proposing a novel framework to aggregate both short- and long- range properties

CLASSIFICATION RESULT

for better prediction of graph labels.

| | S | Table: Preclinical AD classification performance (CN/SMC/EMCI) on ADNI data.
e Demonstrating superior performance on graph classification in comparisons to the — : : _ _ _
state-of-the-art methods. Modalities Cortical Thlckn(-.:s_s & 5-Amyloid Cortical Thlc!(rress & FDG
S - . . _ _ , _ _ Methods Accuracy Precision Recall Accuracy Precision Recall
e Showing interpretability on the brain networks in a scenario with multiple imaging GCN 0.8614004 0.7724006 0.780+006  0.8734002 0.802+002  0.813+0.03
biomarkers. GAT 0.896-0.01  0.827+0.03  0.83940.02 @ 0.882+0.02 0.811+0.03  0.84440.03
. GraphHeat 0.8684+0.02 0.777+0.05 0.797+0.04 & 0.887+0.03 0.821+0.04  0.834+0.03
PRELIMINARY: GRAPH KERNEL CONVOLUTION GDC 0.8584+0.02  0.767+0.03  0.786+0.04 & 0.842+0.01  0.743+0.02  0.76540.03
. . . ADC 0.9064+0.02 0.835+0.03 0.861+0.04 & 0.896+0.01 0.831+0.01  0.84740.02
> An undirected graph G = {V, E} with N nodes comprises a node set V and an edge| | ¢)p 0.91140.01 0.847+0.03 0.87240.02 09344002 0.899+0.05 0.904+0.03
set E. A symmetric adjacency matrix A and a diagonal degree matrix D can be NodeFormer = 0.916+£0.02  0.856+0.04  0.865+0.02 = 0.944+0.01  0.913+0.03  0.921+0.02
computed from E. A graph Laplacian is defined as L = D — A. It has a complete set DIFFormer | 0.930+0.01  0.877+0.03  0.900+0.02 = 0.954+0.01  0.923+0.02  0.944-+0.01
of orthonormal eigenvectors U = [us|ug]...|un] and corresponding real and SGFormer 0.94140.01  0.894+0.03 0.91140.02 0.959+0.01 0.9314+0.01  0.945+0.01
non-negative eigenvalues 0 = Ay < ... < Ay, so does the normalized Laplacian GTAD (Ours) = 0.945+0.02 0.901+0.03  0.919+0.02 0.963+0.01 0.935+0.02  0.948--0.01
L=D12 D172 Modalities 3-Amyloid & FDG All Imaging Features
» From Spectral Graph Theory, the choice of a kernel function determines specific Methods Accuracy  Precision Recall Accuracy  Precision Recall
N GAT 0.8774+0.02 0.815+0.03  0.814+0.04 & 0.912+0.01 0.858+0.02  0.864-+0.02
h s\, GraphHeat 0.8804+0.02  0.804+0.05 0.824+0.03 & 0.893+0.02 0.824+0.03  0.839+0.03
s(P,q) = E e >ui(p)ui(q) (1) GDC 0.866+0.02 0.787+0.03  0.790+0.03 = 0.8674+0.02  0.779+0.03  0.799-+0.02
j=1 ADC 0.910+0.01  0.865+0.02  0.856+0.02 & 0.904+0.02 0.855+0.04  0.85840.02
where U; is the /-th eigenvector_ The kernel e—S)\i Captures smooth transition LSAP 0.92240.02 0.862+4-0.05 0.893+0.03 0.912+0.01 0.844+0.04 0.879+0.02
between nodes within the scale s as a low-pass filter. Graph Fourier transform, i.e., NodeFormer 0.931+0.01 0.887+0.03  0.893+0.03 | 0.938+0.02 0.900+0.03 0.902+0.03
% = UTx, defines the graph convolution = of a signal x(p) with a filter hs as DIFFormer 0.95140.01  0.919+£0.03  0.933+0.02 | 0.953+0.01  0.920+0.02  0.936-40.02
N SGFormer 0.9544+0.01 0.923+0.03  0.936+0.02 | 0.951+0.01 0.911+0.02  0.93340.02
CS\iny GTAD (Ours) = 0.962+0.01 0.935+0.02 0.946+0.02 0.963--0.01 0.943-0.01 0.941-:-0.02
hs x x(p) = » e *Vx(i)ui(p) e — — e o
- =1 INTERPRETATION OF THE TRAINED GTAD
whose band-width is controlled by the scale s.

» Discussion on the Scales

e The trained model yields node-wise optimized scales, where each node
corresponds to a specific ROl in the brain.
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Figure: lllustration of our framework (GTAD). A novel end-to-end framework GTAD that learns
node-centric parameters of a diffusion kernel which are governed by a transformer.

e From the attention block, each ROI gains long-range characteristics from other
ROls by modality-wise attention mechanism.
e Most relevant ROls in Preclinical AD prediction can be detected by total attention

AT\ . . . . T NxN ] ] ] . .
> Modality-wise Adaptive Convolution Block. Consider G given as L € R™7, a set scores that represent the intensity of attention at each ROI in the brain.

of features (i.e., imaging measures) X = {x™}™__ defined on N nodes from M

0 _ _ . 50

modalities, a set of trainable scales {s™}™_. where s™ € RN and a graph label Y. 52 orteel THEnES= 4 = A e
Each encoder consists of multiple graph convolution layers that adaptively 25 30 30
aggregate features for each node with a non-linear activation function o, as E’i: 20 %

m —s"L ym m S10

HZ — O'Z(e HZ—1 WZ ) (3) g | 10 o ) 10

i ] ] . . 0520 40 60 80 100 120 140 160 ° 0 20 40 60 80 100 130 140 160 ° O 20 40 60 80 100 120 140 160

» Modality-wise Self-Attention Block. The obtained embeddings {HZ}M_. are ROI RO ROI

Figure: Distribution of attention scores across all brain regions with cortical thickness (left), 5-Amyloid

inputted to an attention block to compute node-wise attention scores. Using the _
(center) and FDG (right).

self-attention scores, a self-attention value is computed as

meT
o(Q7 K™ V™ = (Y V"

» Transformer-Guided Scale Update. To update a scale s/’ at the n-th node for the
m-th encoder, the objective function is defined by cross-entropy between the true

» Ablation Study on the Blocks

e To explore the effect of each block, ablation study on convolution types and
attention types for preclinical AD classification is given.

(4)

Table: Performance comparisons of different blocks. For attention block, our multi-modal (MM) attention
and existing position-wise attention are compared.

value Y; and the prediction Yj;.

Ty v N Convolution Block MM Attention Accuracy Precision Recall
1 < n 1 — —— - Multi-Layer Perceptron X 0.939+0.03 0.893-+0.05 0.913+0.04
L=—=) > YjnYj+ar> » 1s<0|Sh |- (5) / 0.947£0.02  0.90640.04  0.933+0.02
T 1 j—1 M 1 —1 Graph Convolution Laver X 0.89940.01 0.835-+0.03 0.849+0.03
P d / 0.900+0.01 0.83440.03  0.852-0.02
Update of the modality-specific scales is performed as s «+ s — 5g—L via | | X 0.945+0.03 0.903+0.05 0.92240.04
. . : S Adaptive Convolution Layer (Ours)
gradient-descent with a learning rate 5. v/ 0.963+0.01 0.943+0.01 0.941+0.02
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